نوع مقاله : مقاله پژوهشی - کاربردی

نویسنده

گروه ریاضی، واحد پارس‌آباد مغان، دانشگاه آزاد اسلامی، پارس‌آباد مغان، ایران.

چکیده

هدف: فرآیند تحلیل سلسله‌مراتبی یک روش تصمیم‌گیری چندمعیاره است که در عرصه‌های مختلفی به‌صورت گسترده مورد استفاده قرار گرفته است. به دست آوردن اولویت‌های معیارها یا گزینه‌های تصمیم از ‏ماتریس‌های مقایسه زوجی در AHP به‌صورت گسترده‌ای مورد مطالعه قرار گرفته است. این مقاله رویکرد «DEA با مرز دوگانه» را برای تعیین اولویت در AHP پیشنهاد می‌کند. در این رویکرد جدید، از دو مدل DEA خوش‌بینانه و بد‌بینانه برای به دست آوردن بهترین اولویت‌های محلی از یک ماتریس مقایسه‌ زوجی، صرف نظر از این‌که کاملا سازگار باشد یا نباشد، استفاده می‌شود.
روش‌شناسی پژوهش: یکی از روش‌های تعیین اولویت، تحلیل پوششی داده‌ها است که در ترکیب با AHP، روش DEAHP را برای به دست آوردن و تجمیع وزن‌ها در AHP ایجاد می‌کند. بررسی‌ها نشان می‌دهد که روش DEAHP برای به دست آوردن و تجمیع وزن‌ها در AHP، معیوب است و گاه برای ماتریس‌های مقایسه‌ زوجی ناسازگار، بردارهای اولویت مخالف با شهود ایجاد می‌کند که موجب محدودیت کاربرد آن می‌شود. در این مقاله، یک رویکرد مبتنی بر «DEA با مرز دوگانه» را برای غلبه بر مشکلات DEAHP ارایه می‌کنیم.
یافته‌ها: به خاطر نیاز به توسعه‌ نظریه‌ DEAHP و روش‌های آن و هم کاربردهای واقعی آن، مدل DEAHP ‏بد‌بینانه‌ جدیدی را پیشنهاد کردیم که یک معیار یا گزینه تصمیم را از دیدگاه بد‌بینانه ارزیابی می‌کند. سپس با استفاده از یک شاخص، وزن‌های به دست آمده از دیدگاه‌های خوش‌بینانه و بد‌بینانه را تلفیق کردیم تا یک ارزیابی کلی از معیارها یا گزینه‌های تصمیم به دست آید. چند مثال عددی، ازجمله یک کاربرد واقعی از AHP برای انتخاب یک تیم نوآوری برای یک دانشگاه ارایه شدند، نتایج نشان‌دهنده‌ مزایای رویکرد پیشنهادی و کاربردهای بالقوه‌ آن می‌باشند.
اصالت/ارزش افزوده علمی: رویکرد DEA با مرز دوگانه برای ماتریس‌های مقایسه‌ زوجی کاملا سازگار وزن‌های حقیقی تولید می‌کند و برای ماتریس‌های مقایسه‌ زوجی ناسازگار، بهترین اولویت‌های محلی را ایجاد می‌کند که منطقی و متناسب با قضاوت‌های ذهنی تصمیم گیرندگان هستند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

An approach based on double-frontier DEA for determining priorities and obtaining weights in AHP

نویسنده [English]

  • Hossein Azizi

Department of Applied Mathematics, Parsabad Moghan Branch, Islamic Azad University, Parsabad Moghan, Iran.

چکیده [English]

Purpose: The Analytic Hierarchy Process (AHP) is a multiple criteria decision-making method extensively used in various fields. Prioritization of decision criteria or alternatives from pairwise comparison matrices in AHP has been studied extensively. This article proposed the “Double-Frontier DEA” approach for prioritization in AHP. This new approach uses two optimistic and pessimistic DEA models to obtain the best local priorities from a pairwise comparison matrix, regardless of whether it is fully consistent or not.
Methodology: One of these methods is Data Envelopment Analysis (DEA). The combination of DEA and AHP (DEAHP) is used to obtain and aggregate weights in AHP. Studies show that DEAHP fails in obtaining and aggregating weights in AHP and sometimes produces priority vectors contrary to evidence for inconsistent pairwise comparison matrices that limits its application.
Findings: This new approach uses two optimistic and pessimistic DEA models to obtain the best local priorities from a pairwise comparison matrix, regardless of whether it is fully consistent or not. Some numerical examples, including a real application of AHP for selecting an innovation team for a university, are provided to specify the advantages of the proposed approach and its potential applications.
Originality/Value: The double-frontier DEA approach generates true weights for fully consistent pairwise comparison matrices and best local priorities for inconsistent pairwise comparison matrices, that are logical and fit subjective judgments of decision-makers.

کلیدواژه‌ها [English]

  • Data envelopment analysis
  • Analytic hierarchy process
  • DEAHP
  • Multiple criteria decision-making
[1] Saaty, T. L. (1994). Fundamentals of decision making and priority theory with the analytic hierarchy process. RWS Publications. https://cir.nii.ac.jp/crid/1130282271510816896
[2] Chu, A. T. W., Kalaba, R. E., & Spingarn, K. (1979). A comparison of two methods for determining the weights of belonging to fuzzy sets. Journal of optimization theory and applications, 27, 531–538.
[3] Crawford, G. B. (1987). The geometric mean procedure for estimating the scale of a judgement matrix. Mathematical modelling, 9(3–5), 327–334.
[4] Islei, G., & Lockett, A. G. (1988). Judgemental modelling based on geometric least square. European journal of operational research, 36(1), 27–35.
[5] Cogger, K. O., & Yu, P. L. (1985). Eigenweight vectors and least-distance approximation for revealed preference in pairwise weight ratios. Journal of optimization theory and applications, 46, 483–491.
[6] Ramanathan, R. (2006). Data envelopment analysis for weight derivation and aggregation in the analytic hierarchy process. Computers & operations research, 33(5), 1289–1307.
[7] Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European journal of operational research, 2(6), 429–444.
[8] Sevkli, M., Lenny Koh, S. C., Zaim, S., Demirbag, M., & Tatoglu, E. (2007). An application of data envelopment analytic hierarchy process for supplier selection: a case study of BEKO in Turkey. International journal of production research, 45(9), 1973–2003.
[9] Wang, Y. M., Parkan, C., & Luo, Y. (2008). A linear programming method for generating the most favorable weights from a pairwise comparison matrix. Computers & operations research, 35(12), 3918–3930.
[10]   Andreolli, F., Bragolusi, P., D’Alpaos, C., Faleschini, F., & Zanini, M. A. (2022). An AHP model for multiple-criteria prioritization of seismic retrofit solutions in gravity-designed industrial buildings. Journal of building engineering, 45, 103493. https://doi.org/10.1016/j.jobe.2021.103493
[11]   Xu, Y., Dai, W., Huang, J., Li, M., & Herrera-Viedma, E. (2022). Some models to manage additive consistency and derive priority weights from hesitant fuzzy preference relations. Information sciences, 586, 450–467.
[12]   Ramík, J. (2021). Deriving priority vector from pairwise comparisons matrix with fuzzy elements. Fuzzy sets and systems, 422, 68–82. DOI: https://doi.org/10.1016/j.fss.2020.11.022
[13]   Wang, Z. J. (2021). Eigenproblem driven triangular fuzzy analytic hierarchy process. Information sciences, 578, 795–816.
[14]   Zhang, J., Kou, G., Peng, Y., & Zhang, Y. (2021). Estimating priorities from relative deviations in pairwise comparison matrices. Information sciences, 552, 310–327.
[15]   Wang, Y. M., Chin, K. S., & Poon, G. K. K. (2008). A data envelopment analysis method with assurance region for weight generation in the analytic hierarchy process. Decision support systems, 45(4), 913–921.
[16]   Hwang, C. L., & Masud, A. S. M. (2012). Multiple objective decision making-methods and applications: a state-of-the-art survey (Vol. 164). Springer Science & Business Media. https://doi.org/10.1007/978-3-642-45511-7
[17]   Belton, V., & Gear, T. (1983). On a short-coming of Saaty’s method of analytic hierarchies. Omega, 11(3), 228–230.
[18]   Saaty, T. L., & Vargas, L. G. (1984). The legitimacy of rank reversal. Omega, 12(5), 513–516.
[19]   Moore, R. E. (1979). Methods and applications of interval analysis. SIAM. https://epubs.siam.org/doi/pdf/10.1137/1.9781611970906.fm
[20]   Wang, Y. M., Luo, Y., & Xu, Y. S. (2013). Cross-weight evaluation for pairwise comparison matrices. Group decision and negotiation, 22(3), 483–497.
[21]   Wang, Y. M., Parkan, C., & Luo, Y. (2007). Priority estimation in the AHP through maximization of correlation coefficient. Applied mathematical modelling, 31(12), 2711–2718.
[22]   Saaty, T. L. (1980). The analytical hierarchy process, planning, priority. McGraw-Hill.
[23]   Saaty, T. L. (2003). Decision-making with the AHP: Why is the principal eigenvector necessary. European journal of operational research, 145(1), 85–91.
[24]   Jensen, R. E. (1984). An alternative scaling method for priorities in hierarchical structures. Journal of mathematical psychology, 28(3), 317–332.
[25]   Golany, B., & Kress, M. (1993). A multicriteria evaluation of methods for obtaining weights from ratio-scale matrices. European journal of operational research, 69(2), 210–220.
[26]   Blankmeyer, E. (1987). Approaches to consistency adjustment. Journal of optimization theory and applications, 54, 479–488.
[27]   Jensen, R. E. (1983). Comparisons of eigenvector, least squares, chi square, and logarithmic least squares methods of scaling a reciprocal matrix. Working paper 153, 552, 310–327. http://www.trinity.edu/rjensen/127wp/127wp.htm
[28]   Crawford, G., & Williams, C. (1985). A note on the analysis of subjective judgment matrices. Journal of mathematical psychology, 29(4), 387–405.
[29]   Lipovetsky, S., & Conklin, W. M. (2002). Robust estimation of priorities in the AHP. European journal of operational research, 137(1), 110–122.