نوع مقاله : مقاله پژوهشی - کاربردی

نویسندگان

1 گروه مهندسی صنایع، دانشگاه تربیت مدرس، تهران، ایران.

2 گروه مهندسی صنایع، دانشگاه کردستان، سنندج، ایران.

3 گروه مهندسی صنایع، دانشگاه کوثر بجنورد، بجنورد، ایران.

10.22105/dmor.2021.274589.1328

چکیده

هدف: در ماشین‌آلات CNC با تغییر در شرایط ماشین‌کاری مانند سرعت و نرخ تغذیه، مدت‌زمان عملیات نیز تغییر خواهد کرد. تغییر در این شرایط همچنین منجر به تغییر در زمان سیکل تولیدی و هزینه‌های تولید می‌شود. طول عمر ابزار نیز نسبت به این تغییرات حساس است. مدت‌زمان مناسب ماشین‌کاری عموماً با فرض معین بودن طول عمر ابزار و با هدف حداقل نمودن هزینه‌های تولید تعیین می‌شود. حال‌آنکه حداقل نمودن هزینه‌ها معمولاً منجر به افزایش زمان ماشین‌کاری و کاهش نرخ خروجی می‌شود.
روش‌شناسی پژوهش: در این تحقیق، مدت‌زمان بهینه ماشین‌کاری با استفاده از یک مدل دوهدفه شامل حداقل نمودن هزینه و زمان سیکل تولیدی در یک سلول رباتیک یک‌ماشینه شامل یک ماشین CNC و یک ربات جابه‌جا کننده، برای تولید قطعات یکسان معرفی شده است. مدل پیشنهادی تحقیق با استفاده از روش محدودیت اپسیلون در نرم‌افزار گمز کدنویسی و نتایج آن گزارش شده است.
یافتهها: مسئله این تحقیق در دو حالت طول عمر معین و احتمالی ابزار مدل‌سازی و حل شده است. نتایج نشان داد که کاهش مدت‌زمان عملیات در سرعت‌های متفاوت لزوماً افزایش هزینه‌ یکسانی را به سیستم تحمیل نمی‌کند؛ بنابراین باید در انتخاب مدت‌زمان مناسب ماشین‌کاری برای ابزارها و قطعه‌های متفاوت دقت بیشتری نمود. توجه به نرخ وقوع شکست‌های ناگهانی نیز در انتخاب زمان مناسب برای ماشین‌کاری اهمیت دارد.
اصالت/ارزش‌افزوده علمی: در این تحقیق، برای نخستین بار نرخ وقوع خرابی ابزار به‌عنوان یکی از عوامل ایجاد هزینه در سلول رباتیک به تابع هزینه یک سیکل تولیدی اضافه شده است و تأثیر آن بر تعیین مدت‌زمان مناسب ماشین‌کاری بررسی شده است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Bi-Objective Model for Determining Optimal Machining Time in a Single Machine Robotic Cell by Considering the Stochastic Lifespan of the Tool

نویسندگان [English]

  • Leila Hasan-Beigi Dashtbayaz 1
  • Isa Nakhai Kamalabadi 2
  • Ali Husseinzadeh Kashan 1
  • Sakine Beigi 3

1 Department of Industrial Engineering, Tarbiat Modares University, Tehran, Iran.

2 Department of Engineering, University of Kurdistan, Sanandaj, Iran.

3 Department of Industrial Engineering, Kosar University of Bojnord, Bojnord, Iran.

چکیده [English]

Purpose: In CNC machines, changes in machining conditions such as speed and feed rate will also change the operating time. Changes in these conditions also result in changes in the production cycle time and production costs. Tool life is also sensitive to these changes. Appropriate machining time is generally determined by assuming a certain lifetime for CNC machine tools to minimize production costs. However, minimizing costs usually results in increased machining time and lower output rates.
Methodology: In this research, the optimal machining time is determined using a bi-objective model including minimizing the cost and total production time of a robotic cell with a CNC machine and a material handling robot. It has assumed that identical productions are produced in this robotic cell. Using the Epsilon constraint method, the proposed model is coded in GAMS software and its results are reported.
Findings: In this research, the lifespan of the CNC machine tools can be considered as a determined or probable value. The results showed that decreasing the operation time at different speeds does not necessarily impose the same cost on the system. Therefore, it is necessary to be more careful in choosing the appropriate machining time for different tools and parts. Paying attention to the rate of suddenly tool breakdowns is also important in choosing the appropriate time for machining. Using a set of non-dominated solutions, it is possible to determine the appropriate machining time in different parts to achieve a suitable level of problem objectives.
Originality/Value: In this research, for the first time, the failure rate of the tool as one of the cost factors in the robotic cell has been added to the cost function of a production cycle and its effect on determining the appropriate machining time has been investigated.

کلیدواژه‌ها [English]

  • Single Machine Robotic Cell
  • CNC Machines
  • Two-objective optimization
Abdulkader, M. M. S., ElBeheiry, M. M., Afia, N. H., & El-Kharbotly, A. K. (2013). Scheduling and sequencing in four machines robotic cell: application of genetic algorithm and enumeration techniques. Ain Shams engineering journal4(3), 465-474.
Azizoglu, M., Kondakci, S., & Köksalan, M. (2003). Single machine scheduling with maximum earliness and number tardy. Computers & industrial engineering45(2), 257-268.
Badrinathan, K. S., & Karunamoorthy, L. (2014). Reducing tool wear in CNC end milling operation using progressive feed rate. Applied mechanics and materials, 592, 716-723.
Batur, G. D., Karasan, O. E., & Akturk, M. S. (2012). Multiple part-type scheduling in flexible robotic cells. International journal of production economics135(2), 726-740.
Boothroyd, G., & Knight, W.A. (1989). Fundamentals of machining and machine tools. New York: Marcel Dekker.
Brintrup, A. M., Ramsden, J., & Tiwari, A. (2007). An interactive genetic algorithm-based framework for handling qualitative criteria in design optimization. Computers in industry58(3), 279-291.
Blazewicz, J., Sethi, S. P., & Sriskandarajah, C. (1989). Scheduling of robot moves and parts in a robotic cell (pp. 281-286). École des hautes études commerciales, Groupe d'études et de recherche en analyse des décisions.
Chaharsooghi, S. K., & Kermani, A. H. M. (2008). An effective ant colony optimization algorithm (ACO) for multi-objective resource allocation problem (MORAP). Applied mathematics and computation200(1), 167-177.
Che, A., Hu, H., Chabrol, M., & Gourgand, M. (2011). A polynomial algorithm for multi-robot 2-cyclic scheduling in a no-wait robotic cell. Computers & operations research38(9), 1275-1285.
Dawande, M. W., Geismar, H. N., Sethi, S. P., & Sriskandarajah, C. (2007). Throughput optimization in robotic cells (Vol. 101). Springer Science & Business Media.
Drobouchevitch, I. G., Sethi, S. P., & Sriskandarajah, C. (2006). Scheduling dual gripper robotic cell: one-unit cycles. European journal of operational research171(2), 598-631.
Elmi, A., & Topaloglu, S. (2017). Cyclic job shops robotic cell scheduling problem: ant colony optimization. Computers & industrial engineering111, 417-432.
Fathian, M., Kamalabadi, I. N., Heydari, M., Farughi, H., & Naseri, F. (2013). Applying metaheuristic algorithms for output rate analysis in two-machine robotic manufacturing cells. International journal of advanced robotic systems10(3), 169. https://doi.org/10.5772/56051
Foumani, M., Razeghi, A., & Smith-Miles, K. (2020). Stochastic optimization of two-machine flow shop robotic cells with controllable inspection times: from theory toward practice. Robotics and computer-integrated manufacturing61, 101822. https://doi.org/10.1016/j.rcim.2019.101822
Gultekin, H., Akturk, M. S., & Karasan, O. E. (2008). Bicriteria robotic cell scheduling. Journal of scheduling11(6), 457-473.
Gultekin, H., Akturk, M. S., & Karasan, O. E. (2010). Bicriteria robotic operation allocation in a flexible manufacturing cell. Computers & operations research37(4), 779-789.
Gultekin, H., Dalgıç, Ö. O., & Akturk, M. S. (2017). Pure cycles in two-machine dual-gripper robotic cells. Robotics and computer-integrated manufacturing48, 121-131.
Gultekin, H. (2012). Scheduling in flowshops with flexible operations: throughput optimization and benefits of flexibility. International journal of production economics140(2), 900-911.
Gürel, S., Gultekin, H., & Akhlaghi, V. E. (2019). Energy conscious scheduling of a material handling robot in a manufacturing cell. Robotics and computer-integrated manufacturing58, 97-108.
Hoogeveen, H. (2005). Multicriteria scheduling. European journal of operational research167(3), 592-623.
Hosseinzadeh, M., Mehrgan, M., Aghaei Meibodi, L., & Abbasian, E. (2018). Developing stochastic additive utility method (UTA) considering the possible dependency among criteria. Industrial management journal10(4), 503-524.
Kayan, R. K., & Akturk, M. S. (2005). A new bounding mechanism for the CNC machine scheduling problems with controllable processing times. European journal of operational research167(3), 624-643.
Kharbeche, M., Carlier, J., Haouari, M., & Moukrim, A. (2011). Exact methods for the robotic cell problem. Flexible services and manufacturing journal23(2), 242-261.
Khoran, M., & Safari, H. (2017). An investigation of effects of tool size and feed rate on tool life in high-speed milling of Ti-6Al-4V alloy. Modares mechanical engineering16(12), 21-26.
Khorasani, N., & Esmaelian, M. (2018). Integrating process planning and scheduling taking into account multiple objective using constraint planning. Industrial management journal10(4), 677-698.
Köksalan, M., & Keha, A. B. (2003). Using genetic algorithms for single-machine bicriteria scheduling problems. European journal of operational research145(3), 543-556.
Li, Y., Zhang, X., Ran, Y., & Zhang, G. (2021). Early failure modeling and analysis of CNC machine tools. The international journal of advanced manufacturing technology112(9), 2731-2754.
Majumder, A., Laha, D., & Suganthan, P. N. (2019). Bacterial foraging optimization algorithm in robotic cells with sequence-dependent setup times. Knowledge-based systems172, 104-122.
Moradi, V., Yousefi Nejad Attari, M., & Farughi, H. (2018). Modeling for minimizing cycle time in a three-machine robotic cell with assumption of tool switching. Journal of industrial engineering research in production systems, 6(12), 1-17. (In Persian). DOI: 10.22084/IER.2017.12669.1578
Ramalingam, S., & Watson, J. (1977). Tool-life distributions part 1: single-injur toollife model. Journal of engineering for industry, 99(3), 519-522.
Rezaeian, J., Derakhshan, N., Mahdavi, I., & Alizadeh Foroutan, R. (2021). Due date assignment and JIT scheduling problem in blocking hybrid flow shop robotic cells with multiple robots and batch delivery cost‎. International journal of industrial mathematics13(2), 145-162.
Sethi, S. P., Sriskandarajah, C., Sorger, G., Blazewicz, J., & Kubiak, W. (1992). Sequencing of parts and robot moves in a robotic cell. International journal of flexible manufacturing systems4(3), 331-358.
Tavakkoli-Moghaddam, R., Masoudi, S., & Eghbali, H. (2016). Solving a new mathematical model for a multi-objective and multi-depot vehicle routing problem by a non-dominated sorting Genetic algorithm. Journal of industrial engineering research in production systems3(6), 167-175.
Taylor, F. W. (1907). On the art of metal cutting. Trans. ASME28, 31-35.
Tonke, D., Grunow, M., & Akkerman, R. (2019). Robotic-cell scheduling with pick-up constraints and uncertain processing times. IISE transactions51(11), 1217-1235.
Yang, Z., Zhu, D., Chen, C., Tian, H., Guo, J., & Li, S. (2018). Reliability modelling of CNC machine tools based on the improved maximum likelihood estimation method. Mathematical problems in engineering2018. https://doi.org/10.1155/2018/4260508
Yildiz, S., Karasan, O. E., & Akturk, M. S. (2012). An analysis of cyclic scheduling problems in robot centered cells. Computers & operations research39(6), 1290-1299.
Zhang, X., Han, C., Luo, M., & Zhang, D. (2020). Tool wear monitoring for complex part milling based on deep learning. Applied sciences10(19), 6916. https://doi.org/10.3390/app10196916