پیاده سازی روش برنامه ریزی فازی-استوار در مسئله مکان‌یابی-مسیریابی و تخصیص شبکه‌ی چندهدفه‌ی دارو تحت عدم قطعیت

نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه مهندسی صنایع، دانشگاه پیام نور، تهران، ایران.

2 گروه مهندسی صنایع، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، ایران.

3 گروه مهندسی صنایع، واحد تهران شمال، دانشگاه پیام نور، تهران، ایران.

10.22105/dmor.2020.236652.1162

چکیده

در این مقاله به طراحی یک شبکه‌ی زنجیرهی تأمین دارو با درنظرگرفتن شرایط اجتماعی و فسادپذیری پرداخته شده است. برای ارزیابی مدل ابتدا یک مثال عددی در سایز کوچک طراحی و مدل با 3 روش تصمیم‌گیری (تابع مطلوبیت، معیار جامع و برنامه‌ریزی آرمانی) حل شده است. برای مقایسه‌ی نتایج توابع هدف و جواب‌های کارای به‌دست‌آمده از مدل دو هدفه، از شاخص‌های مقایسهی جواب کارا (میانگین‌های توابع هدف، تعداد جواب کارا، شاخص بیشترین گسترش، شاخص فاصله‌گذاری، شاخص فاصله از نقطه‌ی ایده‌آل و زمان محاسباتی) استفاده شده است. روش تصمیم گیری معیار جامع در کسب شاخص‌های میانگین تابع هدف اول، شاخص فاصله از نقطه ی ایده‌آل و زمان محاسباتی کاراتر از دیگر روش‌ها عمل کرده است. روش برنامه‌ریزی آرمانی نیز در کسب شاخص‌های میانگین تابع هدف دوم، تعداد جواب کارا، شاخص بیشترین گسترش، شاخص فاصله گذاری کارایی خود را اثبات کرده است. در نهایت روش تابع مطلوبیت نیز در کسب شاخص حل مسئله در زمان کم‌تر، از دیگر روش‌ها کارا تر بوده است. درنهایت، برای مقایسه و انتخاب کاراترین روش حل از‌بین روش‌های حل بیان‌شده از تاپسیس استفاده شد و مشخص گشت روش معیار جامع، کاراترین روش در بین روش‌های موجود می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Implementation of fuzzy-robust programming method in the locating-routing and allocation multi-objective pharmaceutical supply chain problem under uncertainty

نویسندگان [English]

  • Meisam Jafari Eskandari 1
  • Hamed Nozari 2
  • merdad mokhtari saghinsara 3
1 Department of Industrial Engineering, Payame Noor University, Tehran, Iran.
2 Department of Industrial Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
3 Department of Industrial Engineering, Shemiranat Branch, Payame Noor University, Tehran, Iran.
چکیده [English]

In this research, a supply chain network has been designed to address social and corrupt situations. To evaluate the model, a small dimensional example was first designed and the model was solved with 3 decision methods (utility function, comprehensive criteria, and Goal programming). To compare the results of target functions and the effective responses obtained from the two-objective model, we compared the efficiency response indicators (averages of the target functions, the number of efficient responses, the most exponential index, the gap index, the distance index from the ideal point and the computational time). The decision method is a comprehensive criterion for acquiring average indices of the first objective function, the distance indicator from the ideal point, and the computational time more efficient than other methods. The ideal planning method has also proved to be effective in obtaining average indices of the second objective function, the number of effective responses, the most exponential index, and the efficiency gap index. Finally, the utility function method has also been more efficient in obtaining the problem solving index in less time. Finally, for comparing and choosing the most efficient solving method from solvency solving methods from topsis, the method of the comprehensive method is the most efficient method among existing methods.

کلیدواژه‌ها [English]

  • Supply chain supply network design
  • Multi-objective decision-making methods
  • perishable
Ahmadi, A., Mousazadeh, M., Torabi, S. A., & Pishvaee, M. S. (2018). OR applications in pharmaceutical supply chain management. In Operations research applications in health care management (pp. 461-491). Springer, Cham.

Amaro, A. C. S., & Barbosa-Póvoa, A. P. F. (2008). Planning and scheduling of industrial supply chains with reverse flows: A real pharmaceutical case study. Computers & chemical engineering32(11), 2606-2625.

Gatica, G., Papageorgiou, L. G., & Shah, N. (2003). Capacity planning under uncertainty for the pharmaceutical industry. Chemical engineering research and design81(6), 665-678.

 Jabbarzadeh, A., Fahimnia, B., & Seuring, S. (2014). Dynamic supply chain network design for the supply of blood in disasters: A robust model with real world application. Transportation research part E: logistics and transportation review70, 225-244.

Kelle, P., Woosley, J., & Schneider, H. (2012). Pharmaceutical supply chain specifics and inventory solutions for a hospital case. Operations research for health care1(2-3), 54-63.

Laínez, J. M., Schaefer, E., & Reklaitis, G. V. (2012). Challenges and opportunities in enterprise-wide optimization in the pharmaceutical industry. Computers & chemical engineering47, 19-28.

Leung, S. C., Tsang, S. O., Ng, W. L., & Wu, Y. (2007). A robust optimization model for multi-site production planning problem in an uncertain environment. European journal of operational research181(1), 224-238.

Levis, A. A., & Papageorgiou, L. G. (2004). A hierarchical solution approach for multi-site capacity planning under uncertainty in the pharmaceutical industry. Computers & chemical engineering28(5), 707-725.

Martins, S., Amorim, P., Figueira, G., & Almada-Lobo, B. (2017). An optimization-simulation approach to the network redesign problem of pharmaceutical wholesalers. Computers & industrial engineering106, 315-328.

Masoumi, A. H., Yu, M., & Nagurney, A. (2012). A supply chain generalized network oligopoly model for pharmaceuticals under brand differentiation and perishability. Transportation research part E: logistics and transportation review48(4), 762-780.

 Mousazadeh, M., Torabi, S. A., & Zahiri, B. (2015). A robust possibilistic programming approach for pharmaceutical supply chain network design. Computers & chemical engineering82, 115-128.

Papageorgiou, L. G., Rotstein, G. E., & Shah, N. (2001). Strategic supply chain optimization for the pharmaceutical industries. Industrial & engineering chemistry research40(1), 275-286.

Rossetti, C. L., Handfield, R., & Dooley, K. J. (2011). Forces, trends, and decisions in pharmaceutical supply chain management. International journal of physical distribution & logistics management, 41(6), 601-622.

Shah, N. (2004). Pharmaceutical supply chains: key issues and strategies for optimisation. Computers & chemical engineering28(6-7), 929-941.

Sousa, R. T., Liu, S., Papageorgiou, L. G., & Shah, N. (2011). Global supply chain planning for pharmaceuticals. Chemical engineering research and design89(11), 2396-2409.

Sousa, R. T., Shah, N., & Papageorgiou, L. G. (2005). Global supply chain network optimisation for pharmaceuticals. In Computer aided chemical engineering (Vol. 20, pp. 1189-1194). Elsevier.

Susarla, N., & Karimi, I. A. (2012). Integrated supply chain planning for multinational pharmaceutical enterprises. Computers & chemical engineering42, 168-177.

 Susarla, N., & Karimi, I. A. (2018). Integrated production planning and inventory management in a multinational pharmaceutical supply chain. In Computer aided chemical engineering (Vol. 41, pp. 551-567). Elsevier.

Torabi, S. A., & Hassini, E. (2008). An interactive possibilistic programming approach for multiple objective supply chain master planning. Fuzzy sets and systems159(2), 193-214.

Zahiri, B., & Pishvaee, M. S. (2017). Blood supply chain network design considering blood group compatibility under uncertainty. International journal of production research55(7), 2013-2033.

Zahiri, B., Jula, P., & Tavakkoli-Moghaddam, R. (2018). Design of a pharmaceutical supply chain network under uncertainty considering perishability and substitutability of products. Information sciences423, 257-283. https://doi.org/10.1016/j.ins.2017.09.046

Zahiri, B., Tavakkoli-Moghaddam, R., Mohammadi, M., & Jula, P. (2014). Multi-objective design of an organ transplant network under uncertainty. Transportation research part E: logistics and transportation review72, 101-124.

Zandieh, M., Janatyan, N., Alem-Tabriz, A., & Rabieh, M. (2018). Designing sustainable distribution network in pharmaceutical supply chain: a case study. International journal of supply and operations management5(2), 122-133.