مدل‌سازی حل مسئله‌ی لجستیک امداد بحران در شکستگی سدها: مطالعه‌ی موردی سد شهید رجایی ساری

نوع مقاله: مقاله پژوهشی

نویسندگان

گروه مهندسی صنایع، موسسه آموزش عالی روزبهان، ساری، ایران.

چکیده

شکست سد از اصلی­‌ترین و مهم­ترین پیامد وجود عوامل تهدیدکننده‌‌ی ایمنی سد می‌­باشد و دورنمای شکست یک سد، یک موضوع نگران­‌کننده در مسائل سد­سازی است. علم مهندسی و تجربه در سدسازی نشان ‌می­دهد که به‌طور متوسط، سالانه کم‌تر از یک سد از میان د‌‌‌‌‌ه­ها هزار سد بزرگ دنیا شکسته می­شود. به­‌همین منظور در ­این مقاله مدل پیشنهادی جهت شبیه‌­سازی وقوع حادثه و انجام برنامه‌­ریزی لجستیکی با هدف بهبود در اقدامات لجستیکی و پاسخ به شرایط بحران ارائه می­گردد تا بهترین کارایی را در­هنگام وقوع بحران شاهد باشیم. در این مقاله سعی شده تا با استفاده از تکنیک شبیه‌­سازی، نحوه‌ی شکست سد شهید رجایی ساری را به تصویر بکشیم و تبعات بعد‌از آن را تحلیل نماییم تا در ادامه، اطلاعات خروجی حاصل از آن را به‌عنوان اطلاعات اولیه‌ی یک مدل‌سازی ریاضی بهینه استفاده کنیم. بنابراین در­انتهای پژوهش ‌می­توانیم به‌صورت واضح، مسیر­های بهینه را باکم‌ترین هزینه و زمان حمل­ و­نقل انتخاب نماییم.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Modeling of logistic problem solving of crisis relief in dam breakage: a case study of Shahid Rajaee dam in Sari

نویسندگان [English]

  • seyyedmoein baharisaravi
  • Reza Hasan Zadeh
Department of Industrial Engineering, University College of Rouzbahan, Sari, Iran.
چکیده [English]

Dam failure is one of the main and most important consequences of dam safety factors and the prospect of dam failure is a matter of concern in dam construction issues. Engineering science and experience in dam construction show that, on average, less than one dam annually breaks through the tens of thousands of large dams in the world. For this purpose, this paper proposes a model to simulate the occurrence of an accident and perform logistic planning with the aim of improving logistical measures and responding to crisis situations in order to achieve the best performance in times of crisis. In this paper, we try to illustrate the failure of Shahid Rajaee Dam in Sari using simulation technique and analyze its subsequent consequences, in order to use the output information as a basic mathematical modeling information. . So at the end of the research we can clearly select the optimal routes with the least cost and transportation time.The innovation of the present study is to use a three-objective model to reduce shipping, warehousing and relief costs in the shortest time possible to manage the crisis using this model.

کلیدواژه‌ها [English]

  • Simulation
  • crisis management
  • Logistics
Azimi, M. M., Diving, A. R., & Hosseinpour, M. (1388). بررسی ابعاد بحران ناشی از شکست سد و راهکارهای مدیریت آن [nvestigating the dimensions of the crisis caused by the failure of the dam and its management strategies].8th International Congress of Civil Engineering. Shiraz University, Shiraz. https://www.civilica.com/Paper-ICCE08-ICCE08_966.html
Asadi, M., Shafia, M. A; & Yaqoubi, S. (1396). ارائه یک مدل یکپارچه لجستیک امداد با در نظر گرفتن تسهیلات پشتیبان (مطالعه موردی: زلزله در شهر تهران) [Providing an integrated logistics relief model taking into account support facilities (Case study: Earthquake in Tehran). International journal of industrial engineering and production management, 28 (1), 175-190.
 Long, D. (1997). Logistics for disaster relief: engineering on the run. IIE solutions29(6), 26-30.
Balcik, B., & Beamon, B. M. (2008). Facility location in humanitarian relief. International journal of logistics11(2), 101-121.
Brotcorne, L., Laporte, G., & Semet, F. (2003). Ambulance location and relocation models. European journal of operational research147(3), 451-463.
Van Wassenhove, L. N., & Pedraza Martinez, A. J. (2012). Using OR to adapt supply chain management best practices to humanitarian logistics. International transactions in operational research19(1-2), 307-322.
Altay, N., & Green III, W. G. (2006). OR/MS research in disaster operations management. European journal of operational research175(1), 475-493.
Rawls, C. G., & Turnquist, M. A. (2010). Pre-positioning of emergency supplies for disaster response. Transportation research part B: methodological44(4), 521-534.
Beraldi, P., & Bruni, M. E. (2009). A probabilistic model applied to emergency service vehicle location. European journal of operational research196(1), 323-331.
Mete, H. O., & Zabinsky, Z. B. (2010). Stochastic optimization of medical supply location and distribution in disaster management. International journal of production economics126(1), 76-84.
Jabal-Ameli, M. S., Bozorgi-Amiri, A., Heydari, M., (2011). A multi-objective possibilistic programming model for relief logistics problem. International journal of industrial engineering & production management, 22(1), 65-75.
Schmid, V. (2012). Solving the dynamic ambulance relocation and dispatching problem using approximate dynamic programming. European journal of operational research219(3), 611-621.
Toro-DíAz, H., Mayorga, M. E., Chanta, S., & Mclay, L. A. (2013). Joint location and dispatching decisions for emergency medical services. Computers & industrial engineering64(4), 917-928.
Najafi, M., Eshghi, K., & Dullaert, W. (2013). A multi-objective robust optimization model for logistics planning in the earthquake response phase. Transportation research part E: logistics and transportation review49(1), 217-249.
Wang, H., Du, L., & Ma, S. (2014). Multi-objective open location-routing model with split delivery for optimized relief distribution in post-earthquake. Transportation research part E: logistics and transportation review69, 160-179.
Lu, M., Ran, L., & Shen, Z. J. M. (2015). Reliable facility location design under uncertain correlated disruptions. Manufacturing & service operations management17(4), 445-455.