نوع مقاله : مقاله پژوهشی - کاربردی

نویسندگان

گروه ریاضی و علوم کامپیوتر، دانشکده علوم پایه، دانشگاه لرستان، خرم آباد، ایران.

چکیده

هدف: این مقاله روشی هوشمند برای به‌کارگیری تحلیل پوششی داده‌ها (DEA) در طراحی زنجیره‌تامین پایدار ارایه می‌کند.
روش‌شناسی پژوهش: در روش پیشنهادی، برای غیرفازی‌سازی مدل خطی‌شده ERM، از تکنیک α-برش استفاده می‌شود. سپس، برای اندازه‌گیری بهره‌وری در محیط نامعین با  α-سطح‌های مختلف، از الگوریتم ژنتیک برای یافتن α-برش بهینه استفاده می‌شود و با جایگزینی α-برش بهینه در مدل پیشنهادی، یک مدل تحلیل پوششی داده‌های هوشمند برای رتبه‌بندی شرکت‌های تامین‌کننده طراحی ‌می‌شود.
یافته‌ها: این مقاله یک مدل جدید تحلیل پوششی داده‌های فازی ژنتیکی برای ارزیابی بهره‌وری تامین‌کنندگان در زنجیره‌تامین پایدار ارایه می‌کند.
اصالت/ارزش‌افزوده علمی: در روش پیشنهادی، ازآنجاکه α-برش به‌دست‌آمده از الگوریتم ژنتیک بهینه‌ترین α-برش است، دیگر نیازی به محاسبه‌ بهره‌وری به ازای α-برش­‌های مختلف به‌صورت سعی‌وخطا نیست؛ بنابراین، مزیت روش پیشنهادی این است که علاوه بر بهره‌وری بیشتر برای هر تامین‌کننده، رتبه‌بندی پایدارتری ارایه می‌دهد. مثال ارایه‌شده در این مقاله، برتری و مزایای روش پیشنهادی را نشان می‌دهد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Design an intelligent model for suppliers productivity evaluation in sustainable supply chain

نویسندگان [English]

  • Majid Yarahmadi
  • Saeedeh Sakiniya

Department of Mathematics and Computer Sciences, Faculty of Base Sciences, Lorestan University, Khorramabad, Iran.

چکیده [English]

Purpose: This paper presents an intelligent method for applying Data Envelopment Analysis (DEA) to design a sustainable supply chain.
Methodology: In the proposed method, for defuzzification of the ERM model, we used the -cutting technique. Then, to measure the productivity in the presence of environmental uncertainty via different -levels, a genetic algorithm is implemented to find an optimal -cutting. Finally, an intelligent DEA model for ranking the supplier companies via optimal  value is designed.
Findings: This paper presents a new fuzzy DEA model based on a Genetic Algorithm for evaluating the productivity of suppliers in a sustainable supply chain.
Originality/Value: In the proposed method, since the -cut obtained from the Genetic Algorithm is optimal, there is no longer a need to calculate the efficiency for different α-cuts through trial and error. Therefore, the proposed method's advantage is that it offers a more sustainable ranking in addition to increasing productivity for each supplier. The example presented in this article demonstrates the method's superiority and advantages.

کلیدواژه‌ها [English]

  • Data envelopment analysis
  • Genetic algorithm
  • Integrated enhanced Russell measure model
  • Supply chain management
  • Sustainable supplier selection
[1]     Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European journal of operational research, 2(6), 429–444.
[2]     Ruiz, J. L., & Sirvent, I. (2016). Common benchmarking and ranking of units with DEA. Omega (United Kingdom), 65, 1–9. DOI:10.1016/j.omega.2015.11.007
[3]     Kahi, V. S., Yousefi, S., Shabanpour, H., & Saen, R. F. (2017). How to evaluate sustainability of supply chains? A dynamic network DEA approach. Industrial management and data systems, 117(9), 1866–1889. DOI:10.1108/IMDS-09-2016-0389
[4]     Tavassoli, M., Fathi, A., & Saen, R. F. (2021). Assessing the sustainable supply chains of tomato paste by fuzzy double frontier network DEA model. Annals of operations research, 1–33. DOI:10.1007/s10479-021-04139-4
[5]     Azadi, M., Shabani, A., Khodakarami, M., & Farzipoor Saen, R. (2015). Reprint of “planning in feasible region by two-stage target-setting DEA methods: An application in green supply chain management of public transportation service providers.” Transportation research part E: logistics and transportation review, 74, 22–36. DOI:10.1016/j.tre.2014.12.009
[6]     Yousefi, S., Shabanpour, H., Fisher, R., & Saen, R. F. (2016). Evaluating and ranking sustainable suppliers by robust dynamic data envelopment analysis. Measurement: journal of the international measurement confederation, 83, 72–85. DOI:10.1016/j.measurement.2016.01.032
[7]     Fathi, A., & Farzipoor Saen, R. (2021). Assessing sustainability of supply chains by fuzzy Malmquist network data envelopment analysis: Incorporating double frontier and common set of weights. Applied soft computing, 113, 107923. DOI:10.1016/j.asoc.2021.107923
[8]     Tavassoli, M., Saen, R. F., & Zanjirani, D. M. (2020). Assessing sustainability of suppliers: A novel stochastic-fuzzy DEA model. Sustainable production and consumption, 21, 78–91. DOI:10.1016/j.spc.2019.11.001
[9]     Izadikhah, M., Saen, R. F., & Roostaee, R. (2018). How to assess sustainability of suppliers in the presence of volume discount and negative data in data envelopment analysis? Annals of operations research, 269(1–2), 241–267. DOI:10.1007/s10479-018-2790-6
[10]   Picazo-Tadeo, A. J., Gómez-Limón, J. A., & Reig-Martínez, E. (2011). Assessing farming eco-efficiency: A data envelopment analysis approach. Journal of environmental management, 92(4), 1154–1164. DOI:10.1016/j.jenvman.2010.11.025
[11]   Linton, J. D., Klassen, R., & Jayaraman, V. (2007). Sustainable supply chains: An introduction. Journal of operations management, 25(6), 1075–1082. DOI:10.1016/j.jom.2007.01.012
[12]   Wen, L., Xu, L., & Wang, R. (2013). Sustainable supplier evaluation based on intuitionistic fuzzy sets group decision methods. Journal of information and computational science, 10(10), 3209–3220. DOI:10.12733/jics20102169
[13]   Fathi, A., & Farzipoor Saen, R. (2018). A novel bidirectional network data envelopment analysis model for evaluating sustainability of distributive supply chains of transport companies. Journal of cleaner production, 184, 696–708. DOI:10.1016/j.jclepro.2018.02.256
[14]   Dutta, P., Jaikumar, B., & Arora, M. S. (2022). Applications of data envelopment analysis in supplier selection between 2000 and 2020: a literature review. Annals of operations research, 315(2), 1399–1454. DOI:10.1007/s10479-021-03931-6
[15]   Bao, X., & Li, F. (2021). A methodology for supplier selection under the curse of dimensionality problem based on fuzzy quality function deployment and interval data envelopment analysis. PLoS one, 16(7), e0253917. DOI:10.1371/journal.pone.0253917
[16]   Moghaddas, Z., Tosarkani, B. M., & Yousefi, S. (2022). A developed data envelopment analysis model for efficient sustainable supply chain network design. Sustainability (Switzerland), 14(1), 262. DOI:10.3390/su14010262
[17]   Kumar, A., Jain, V., & Kumar, S. (2014). A comprehensive environment friendly approach for supplier selection. Omega (United Kingdom), 42(1), 109–123. DOI:10.1016/j.omega.2013.04.003
[18]   Kleinsorge, I. K., Schary, P. B., & Tanner, R. D. (1992). Data envelopment analysis for monitoring customer-supplier relationships. Journal of accounting and public policy, 11(4), 357–372. DOI:10.1016/0278-4254(92)90004-H
[19]   Farzipoor Saen, R. (2010). Developing a new data envelopment analysis methodology for supplier selection in the presence of both undesirable outputs and imprecise data. International journal of advanced manufacturing technology, 51(9–12), 1243–1250. DOI:10.1007/s00170-010-2694-3
[20]   Farzipoor Saen, R. (2009). A decision model for ranking suppliers in the presence of cardinal and ordinal data, weight restrictions, and nondiscretionary factors. Annals of operations research, 172, 177–192.
[21]   Talluri, S., Narasimhan, R., & Nair, A. (2006). Vendor performance with supply risk: A chance-constrained DEA approach. International journal of production economics, 100(2), 212–222.
[22]   Weber, C. A., Current, J., & Desai, A. (2000). An optimization approach to determining the number of vendors to employ. Supply chain management: an international journal, 5(2), 90–98.
[23]   Amindoust, A., Ahmed, S., Saghafinia, A., & Bahreininejad, A. (2012). Sustainable supplier selection: A ranking model based on fuzzy inference system. Applied soft computing journal, 12(6), 1668–1677. DOI:10.1016/j.asoc.2012.01.023
[24]   El-Morsy, S. A. (2022). Optimization of fuzzy zero-base budgeting. Computational algorithms and numerical dimensions, 1(4), 147–154.
[25]   Marzband, A. (2020). Precise services and supply chain prioritization in manufacturing companies using cost analysis provided in a fuzzy environment. Journal of fuzzy extension and applications, 1(1), 41–56. DOI:10.22105/jfea.2020.248187.1006
[26]   Azadi, M., Jafarian, M., Farzipoor Saen, R., & Mirhedayatian, S. M. (2015). A new fuzzy DEA model for evaluation of efficiency and effectiveness of suppliers in sustainable supply chain management context. Computers and operations research, 54, 274–285. DOI:10.1016/j.cor.2014.03.002
[27]   Saen, R. F., Karimi, B., & Fathi, A. (2022). Assessing the sustainability of transport supply chains by double frontier network data envelopment analysis. Journal of cleaner production, 354, 131771. DOI:10.1016/j.jclepro.2022.131771
[28]   Yazdani, M., Gonzalez, E. D. R. S., & Chatterjee, P. (2019). A multi-criteria decision-making framework for agriculture supply chain risk management under a circular economy context. Management decision, 59(8), 1801–1826. DOI:10.1108/MD-10-2018-1088
[29]   Izadikhah, M., Farzipoor Saen, R., Ahmadi, K., & Shamsi, M. (2020). How to use fuzzy screening system and data envelopment analysis for clustering sustainable suppliers? A case study in Iran. Journal of enterprise information management, 34(1), 199–229. DOI:10.1108/JEIM-09-2019-0262
[30]   Rashidi, K., & Farzipoor Saen, R. (2015). Measuring eco-efficiency based on green indicators and potentials in energy saving and undesirable output abatement. Energy economics, 50, 18–26. DOI:10.1016/j.eneco.2015.04.018
[31]   Huma, S., Ahmed, W., & Najmi, A. (2020). Understanding the impact of supply-side decisions and practices on supply risk management. Benchmarking, 27(5), 1769–1792. DOI:10.1108/BIJ-06-2019-0272
[32]   Mavi, N. K., & Mavi, R. K. (2019). Energy and environmental efficiency of OECD countries in the context of the circular economy: Common weight analysis for malmquist productivity index. Journal of environmental management, 247, 651–661. DOI:10.1016/j.jenvman.2019.06.069
[33]   Kiani Mavi, R., Fathi, A., Farzipoor Saen, R., & Kiani Mavi, N. (2019). Eco-innovation in transportation industry: A double frontier common weights analysis with ideal point method for Malmquist productivity index. Resources, conservation and recycling, 147, 39–48. DOI:10.1016/j.resconrec.2019.04.017
[34]   Izadikhah, M., Azadi, M., Toloo, M., & Hussain, F. K. (2021). Sustainably resilient supply chains evaluation in public transport: A fuzzy chance-constrained two-stage DEA approach. Applied soft computing, 113, 107879. DOI:10.1016/j.asoc.2021.107879
[35]   Boudaghi, E., & Saen, R. F. (2018). Developing a novel model of data envelopment analysis--discriminant analysis for predicting group membership of suppliers in sustainable supply chain. Computers & operations research, 89, 348–359.
[36]   Wced, S. W. S. (1987). World commission on environment and development. Our common future, 17(1), 1–91.
[37]   Ageron, B., Gunasekaran, A., & Spalanzani, A. (2012). Sustainable supply management: An empirical study. International journal of production economics, 140(1), 168–182. DOI:10.1016/j.ijpe.2011.04.007
[38]   Dyllick, T., & Hockerts, K. (2002). Beyond the business case for corporate sustainability. Business strategy and the environment, 11(2), 130–141.
[39]   Cooper, W. W., Seiford, L. M., & Tone, K. (2007). Data envelopment analysis: A comprehensive text with models, applications, references and DEA-solver software. Springer.
[40]   Esmaeili, M. (2012). An Enhanced Russell Measure in DEA with interval data. Applied mathematics and computation, 219(4), 1589–1593. DOI:10.1016/j.amc.2012.07.060
[41]   Soltanzadeh, E., & Omrani, H. (2018). Dynamic network data envelopment analysis model with fuzzy inputs and outputs: An application for Iranian Airlines. Applied soft computing journal, 63, 268–288. DOI:10.1016/j.asoc.2017.11.031
[42]   Yu, M. M., & Lin, E. T. J. (2008). Efficiency and effectiveness in railway performance using a multi-activity network DEA model. Omega, 36(6), 1005–1017. DOI:10.1016/j.omega.2007.06.003
[43]   Khalili-Damghani, K., Tavana, M., & Santos-Arteaga, F. J. (2015). A comprehensive fuzzy DEA model for emerging market assessment and selection decisions. Applied soft computing journal, 38, 676–702. DOI:10.1016/j.asoc.2015.09.048
[44]   Hatami-Marbini, A., Saati, S., & Tavana, M. (2010). An ideal-seeking fuzzy data envelopment analysis framework. Applied soft computing, 10(4), 1062–1070.
[45]   Farzipoor Sean, R. (2005). Developing a nondiscretionary model of slacks-based measure in data envelopment analysis. Applied mathematics and computation, 169(2), 1440–1447. DOI:10.1016/j.amc.2004.10.053
[46]   Zhu, J. (2004). Imprecise DEA via standard linear DEA models with a revisit to a Korean mobile telecommunication company. Operations research, 52(2), 323–329. DOI:10.1287/opre.1030.0072
[47]   Mozaffari, M. R., & Ostovan, S. (2021). Finding projection in the two-stage supply chain in DEA-R with random data using (CRA) model. Big data and computing visions, 1(3), 146–155.
[48]   Valizadeh Palang Sarae, F. (2020). A new approach to supplier selection: interval ranking of DEA whit double frontiers. Innovation management and operational strategies, 1(1), 17-37. (In Persian). https://www.journal-imos.ir/article_120959.html?lang=en
[49]   Bai, C., & Sarkis, J. (2014). Determining and applying sustainable supplier key performance indicators. Supply chain management, 19(3), 275–291. DOI:10.1108/SCM-12-2013-0441
[50]   Fotova Čiković, K., Martinčević, I., & Lozić, J. (2022). Application of data envelopment analysis (DEA) in the selection of sustainable suppliers: a review and bibliometric analysis. Sustainability (Switzerland), 14(11), 6672. DOI:10.3390/su14116672
[51]   Sharafi, H., Soltanifar, M., & Lotfi, F. H. (2022). Selecting a green supplier utilizing the new fuzzy voting model and the fuzzy combinative distance-based assessment method. EURO journal on decision processes, 10, 100010. DOI:10.1016/j.ejdp.2021.100010
[52]   Zarbakhshnia, N., & Jaghdani, T. J. (2018). Sustainable supplier evaluation and selection with a novel two-stage DEA model in the presence of uncontrollable inputs and undesirable outputs: a plastic case study. International journal of advanced manufacturing technology, 97(5–8), 2933–2945. DOI:10.1007/s00170-018-2138-z
[53]   Pantha, R. P., Islam, M. S., Akter, N., & Islam, E. (2020). Sustainable supplier selection using integrated data envelopment analysis and differential evolution model. Journal of applied research on industrial engineering, 7(1), 25–35. https://www.journal-aprie.com/article_104763
[54]   Amindoust, A. (2018). Supplier selection considering sustainability measures: An application of weight restriction fuzzy-DEA approach. RAIRO - operations research, 52(3), 981–1001. DOI:10.1051/ro/2017033
[55]   Ngobeni, V., & Breitenbach, M. C. (2021). Production and scale efficiency of South African water utilities: The case of water boards. Water policy, 23(4), 862–879. DOI:10.2166/wp.2021.055
[56]   Tayyab, M., & Sarkar, B. (2021). An interactive fuzzy programming approach for a sustainable supplier selection under textile supply chain management. Computers and industrial engineering, 155, 107164. DOI:10.1016/j.cie.2021.107164
[57]   Cheng, Y., Peng, J., Zhou, Z., Gu, X., & Liu, W. (2017). A hybrid DEA-adaboost model in supplier selection for fuzzy variable and multiple objectives. IFAC-papersonline, 50(1), 12255–12260. DOI:10.1016/j.ifacol.2017.08.2038
[58]   Alem Tabriz, A., Zandiyeh, M., & Mohamad Rahimi, A. (2013). Meta-heuristic algorithms in hybrid optimization. Saffar Publishers. (In Persian). https://eshraghipub.com/product/detail/52077/
[59]   Yarahmadi, M., & Sakiniya, S. (2022). Ranking and optimal selection of the most sustainable suppliers based on genetic-fuzzy data envelopment analysis [presentation]. 14th international conference on decision and data envelopment analysis (ICDDEA) (pp. 1-12). (In Persian). https://14dea.shahtoodut.ac.ir
[60]   Fallahpour, A., Olugu, E. U., Musa, S. N., Khezrimotlagh, D., & Wong, K. Y. (2016). An integrated model for green supplier selection under fuzzy environment: application of data envelopment analysis and genetic programming approach. Neural computing and applications, 27(3), 707–725. DOI:10.1007/s00521-015-1890-3
[61]   Saif-Eddine, A. S., El-Beheiry, M. M., & El-Kharbotly, A. K. (2019). An improved genetic algorithm for optimizing total supply chain cost in inventory location routing problem. Ain shams engineering journal, 10(1), 63–76. DOI:10.1016/j.asej.2018.09.002
[62]   Lin, R. C., Sir, M. Y., & Pasupathy, K. S. (2013). Multi-objective simulation optimization using data envelopment analysis and genetic algorithm: Specific application to determining optimal resource levels in surgical services. Omega (United Kingdom), 41(5), 881–892. DOI:10.1016/j.omega.2012.11.003
[63]   Sang, B. (2021). Application of genetic algorithm and BP neural network in supply chain finance under information sharing. Journal of computational and applied mathematics, 384, 113170. https://doi.org/10.1016/j.cam.2020.113170
[64]   Gholizadeh, H., & Fazlollahtabar, H. (2020). Robust optimization and modified genetic algorithm for a closed loop green supply chain under uncertainty: Case study in melting industry. Computers and industrial engineering, 147, 106653. DOI:10.1016/j.cie.2020.106653
[65]   Fathi, M., Khakifirooz, M., Diabat, A., & Chen, H. (2021). An integrated queuing-stochastic optimization hybrid Genetic Algorithm for a location-inventory supply chain network. International journal of production economics, 237, 108139. DOI:10.1016/j.ijpe.2021.108139
[66]   Kusolpuchong, S., Chusap, K., Alhawari, O., & Suer, G. (2019). A genetic algorithm approach for multi objective cross dock scheduling in supply chains. Procedia manufacturing, 39, 1139–1148. DOI:10.1016/j.promfg.2020.01.356
[67]   Pipkin, J. S. (1991). Spatial Analysis and Planning under Imprecision, by Y. Leung. Geographical analysis: an international journal of theoretical geographical, 23(1), 90–92.
[68]   Liu, L., Huang, G. H., Liu, Y., Fuller, G. A., & Zeng, G. M. (2003). A fuzzy-stochastic robust programming model for regional air quality management under uncertainty. Engineering optimization, 35(2), 177–199. DOI:10.1080/0305215031000097068
[69]   Minciardi, R., Paolucci, M., Robba, M., & Sacile, R. (2008). Multi-objective optimization of solid waste flows: Environmentally sustainable strategies for municipalities. Waste management, 28(11), 2202–2212. DOI:10.1016/j.wasman.2007.10.003
[70]   Negoita, C. V., Minoiu, S., & Stan, E. (1976). On considering imprecision in dynamic linear programming. Econ comput econ cybern stud res, 3, 83–96.
[71]   Shih, C. J., Chi, C. C., & Hsiao, J. H. (2003). Alternative α-level-cuts methods for optimum structural design with fuzzy resources. Computers and structures, 81(28–29), 2579–2587. DOI:10.1016/S0045-7949(03)00331-6
[72]   Soyster, A. L. (1973). Convex programming with set-inclusive constraints and applications to inexact linear programming. Operations research, 21(5), 1154–1157.