نوع مقاله : مقاله پژوهشی - کاربردی

نویسنده

گروه ریاضی، دانشکده علوم پایه، دانشگاه ولایت، ایرانشهر، ایران.

10.22105/dmor.2021.286557.1397

چکیده

هدف: در این مقاله توسیع جدیدی از روش قدرتمند تاپسیس برای حل مسائل تصمیم­گیری چندشاخصه نادقیق مدل شده با  استفاده از اعداد فازی مردد، که اخیرا برای مدل‌سازی نوع دیگری از منابع عدم قطعیت معرفی شده‌اند، ارائه خواهد شد.
روش‌شناسی پژوهش: چنان‌که می­دانیم روش تاپسیس مبتنی  بر چندین گام  است که با انجام متوالی آن­ها  مسئله حل خواهد شد. در این مطالعه، داده‌های ماتریس تصمیم به کمک اعداد فازی مردد مدل می‌شوند. سپس با استفاده از ابزارهای ریاضی بیان شده برای این نوع اعداد، دیگر گام‌ها یعنی نرمال‌سازی و وزن‌دار کردن ماتریس تصمیم، یافتن گزینه‌های ایده‌آل مثبت و منفی، تعیین فاصله دیگر گزینه‌ها از این دو گزینه ایده‌آل را به‌روزرسانی خواهیم نمود.
یافته ها: در این مطالعه توسیع جدیدی از روش محبوب تاپسیس برای حل مسائل تصمیم‌گیری چندشاخصه نادقیق،که عدم‌قطعیت در آن‌ها با اعدادفازی مردد کمّی‌سازی شده‌اند، معرفی شده است.
اصالت/ارزش افزوده علمی: به‌روزرسانی گام‌های روش تاپسیس برای استفاده از آن در مواردی که از اعداد فازی مردد برای مدل‌سازی عدم قطعیت استفاده می‌شود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

New extension of TOPSIS method for solving inaccurate MADM problems modeled with hesitant fuzzy numbers

نویسنده [English]

  • Abazar Keikha

Department of Mathematics, Faculty of Science, Velayat University, Iranshahr, Iran.

چکیده [English]

Purpose: The aim of this paper is to propose a new extension of Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method to be applied with Hesitant Fuzzy Numbers (HFNs).
Methodology: At first, the uncertainty of all enteries of evaluation matrix have been modeled by HFNs. Then, each step of the standard model of TOPSIS method will be updated, using the newly introduced HFNs’ mathematical tools, such as distance measures and aggregation operators of HFNs.  The proposed method will be used to solve a Multi-Attribute Decision Making (MADM) problem. Finally, the credibility and comparison analysis of the obtained ranking order will be discussed.
Findings: In this paper, the TOPSIS method as a popular method for solving MADM problems has been developed to be applied with HFNs.
Originality/Value: In this paper, the TOPSIS method as a popular method for solving MADM problems has been developed to be applied with HFNs. 

کلیدواژه‌ها [English]

  • Hesitant Fuzzy Numbers (HFNs)
  • Hesitant fuzzy sets
  • Multi Attribute Decision Making (MADM) problems
  • TOPSIS Method
Atanassov, K. T. (1999). Intuitionistic fuzzy sets. In Intuitionistic fuzzy sets (pp. 1-137). Physica, Heidelberg.
Chen, N., Xu, Z., & Xia, M. (2013). Interval-valued hesitant preference relations and their applications to group decision making. Knowledge-based systems37, 528-540.
Deli, I. (2020). A TOPSIS method by using generalized trapezoidal hesitant fuzzy numbers and application to a robot selection problem. Journal of intelligent & fuzzy systems38(1), 779-793.
Denoeux, T. (2014). Dempster-Shafer theory, introduction, connections with rough sets and application to
Feng, L., Chuan-qiang, F., & Wei-he, X. (2018). Type-2 hesitant fuzzy sets. Fuzzy information and engineering10(2), 249-259.
Garg, H., Arora, R. (2020). TOPSIS method based on correlation coefficient for solving decision-making problems with intuitionistic fuzzy soft set information. AIMS mathematics5(4), 2944-2966.
Garg, H., Keikha, A., & Mishmast Nehi, H. (2020). Multiple-attribute decision-making problem using TOPSIS and choquet integral with hesitant fuzzy number information. Mathematical problems in engineering2020. https://doi.org/10.1155/2020/9874951
Hu, J., Xiao, K., Chen, X., & Liu, Y. (2015). Interval type-2 hesitant fuzzy set and its application in multi-criteria decision making. Computers & industrial engineering87, 91-103.
Jafari, H., & Ehsanifar, M. (2020). Using interval arithmetic for providing a MADM approach. Journal of fuzzy extension and applications1(1), 57-65.
Jin, F., Ni, Z., & Chen, H. (2016). Interval-valued hesitant fuzzy Einstein prioritized aggregation operators and their applications to multi-attribute group decision making. Soft computing20(5), 1863-1878.
Joshi, D., & Kumar, S. (2016). Interval-valued intuitionistic hesitant fuzzy Choquet integral based TOPSIS method for multi-criteria group decision making. European journal of operational research248(1), 183-191.
Kayedppour, F., Sayadmanesh, Sh., Salmani, Y., & Sadeghi, Z. (2020). Measuring the efficiency and productivity of cement companies in Tehran Stock Exchange by data envelopment analysis and Malmquist productivity index in gray environment. Innovation management and operational strategies, 1(4), 363-382. (In Persian). https://www.sid.ir/fa/Journal/ViewPaper.aspx?ID=554606
Keikha, A. (2015). Fuzzy Choquet integral and its application in multi-attribute decision making (Ph.D. Thesis, University of Sistan and Baluchestan). (In Persian).
Keikha, A. (2021). Introducing a new type of HFSs and their application in solving MADM. Journal of intelligence & fuzzy systems, 40(4), 1-12. DOI: 10.3233/JIFS-201808
Keikha, A., & Mishmast Nehi, H. (2021). Introducing a new model for evaluating and ranking employees, organizations and solving MADM problems in a hesitant fuzzy environment. Journal of decisions and operations research, 6(2), 256-270. (In Persian). DOI: 10.22105/dmor.2021.238906.1177
Klir, G. J. (2006). Uncertainty and information: foundations of generalized information theory. John Wiley & Sons.
Kumar, A., Kaur, J., & Singh, P. (2011). A new method for solving fully fuzzy linear programming problems. Applied mathematical modelling35(2), 817-823.
Lalotra, S., & Singh, S. (2020). Knowledge measure of hesitant fuzzy set and its application in multi-attribute decision-making. Computational and applied mathematics39(2), 1-31.
Liao, H., & Xu, Z. (2013). A VIKOR-based method for hesitant fuzzy multi-criteria decision making. Fuzzy optimization and decision making12(4), 373-392.
Liao, H., & Xu, Z. (2014a). Subtraction and division operations over hesitant fuzzy sets. Journal of intelligent & fuzzy systems27(1), 65-72.
Liao, H., & Xu, Z. (2014b). Some new hybrid weighted aggregation operators under hesitant fuzzy multi-criteria decision making environment. Journal of intelligent & fuzzy systems26(4), 1601-1617.
Liao, H., & Xu, Z. (2017). Hesitant fuzzy decision making methodologies and applications. Springer Singapore.
Liao, H., Wu, X., Keikha, A., & Hafezalkotob, A. (2018). Power average-based score function and extension rule of hesitant fuzzy set and the hesitant power average operators. Journal of intelligent & fuzzy systems35(3), 3873-3882.
Maghsoudi, E., Shirouyehzad, H., & Shahin, A. (2015). Prioritization and analysis agility factors affecting the performance of project based organizations with Topsis technique. Journal of applied research on industrial engineering2(3), 195-203.
Mansory, A., Nasiri, A., & Mohammadi, N. (2021). Proposing an integrated model for evaluation of green and resilient suppliers by path analysis, SWARA and TOPSIS. Journal of applied research on industrial engineering8(2), 129-149.
Meng, F., Wang, C., & Chen, X. (2016). Linguistic interval hesitant fuzzy sets and their application in decision making. Cognitive computation8(1), 52-68.
Palczewski, K., & Sałabun, W. (2019). The fuzzy TOPSIS applications in the last decade. Procedia computer science159, 2294-2303.
Pollack, H. N. (2005). Uncertain science... uncertain world. Cambridge University Press.
Qiaoping, S. U. N., & Ouyang, J. (2015). Hesitant fuzzy multi-attribute decision making based on TOPSIS with entropy-weighted method. Management science and engineering9(3), 1-6.
Ranjbar, M., Miri, S. M., & Effati, S. (2020). Hesitant fuzzy numbers with (α, k)-cuts in compact intervals and applications. Expert systems with applications151, 113363. https://doi.org/10.1016/j.eswa.2020.113363
Rouhbakhsh, F. F., Ranjbar, M., Effati, S., & Hassanpour, H. (2020). Multi objective programming problem in the hesitant fuzzy environment. Applied intelligence50(10), 2991-3006.
Salicone, S. (2007). Measurement uncertainty: an approach via the mathematical theory of evidence. Springer Science & Business Media.
Smithson, M. (1988). Ignorance and uncertainty. Springer.
Tong, X., & Yu, L. (2016). MADM based on distance and correlation coefficient measures with decision-maker preferences under a hesitant fuzzy environment. Soft computing20(11), 4449-4461.
Torra, V. (2010). Hesitant fuzzy sets. International journal of intelligent systems25(6), 529-539.
Torra, V., & Narukawa, Y. (2009, August). On hesitant fuzzy sets and decision. 2009 IEEE international conference on fuzzy systems (pp. 1378-1382). IEEE.
Tzeng, G. H., & Huang, J. J. (2011). Multiple attribute decision making: methods and applications. CRC press.
Wang, X., & Triantaphyllou, E. (2008). Ranking irregularities when evaluating alternatives by using some ELECTRE methods. Omega36(1), 45-63.
Weaver, W. (1948). Science and complexity. American scientist, 36(4), 536-544. https://www.jstor.org/stable/27826254
Wei, G. (2012). Hesitant fuzzy prioritized operators and their application to multiple attribute decision making. Knowledge-based systems31, 176-182.
Wei, G., Alsaadi, F. E., Hayat, T., & Alsaedi, A. (2016). Hesitant fuzzy linguistic arithmetic aggregation operators in multiple attribute decision making. Iranian journal of fuzzy systems13(4), 1-16.
Wei, G., Wang, H., Zhao, X., & Lin, R. (2014). Approaches to hesitant fuzzy multiple attribute decision making with incomplete weight information. Journal of intelligent & fuzzy systems26(1), 259-266.
Wei, G., Zhao, X., Wang, H., & Lin, R. (2012). Hesitant fuzzy choquet integral aggregation operators and their applications to multiple attribute decision making. International information institute (Tokyo)15(2), 441-448.
Xia, M., & Xu, Z. (2011a). Hesitant fuzzy information aggregation in decision making. International journal of approximate reasoning52(3), 395-407.
Xia, M., & Xu, Z. (2011b). Methods for fuzzy complementary preference relations based on multiplicative consistency. Computers & industrial engineering61(4), 930-935.
Xu, Z., & Xia, M. (2011). Distance and similarity measures for hesitant fuzzy sets. Information Sciences181(11), 2128-2138.
Xu, Z., & Xia, M. (2012). Hesitant fuzzy entropy and cross‐entropy and their use in multiattribute decision‐making. International journal of intelligent systems27(9), 799-822.
Yu, D., Wu, Y., & Zhou, W. (2011). Multi-criteria decision making based on choquet integral under hesitant fuzzy environment. Journal of computational information systems, 7(12), 4506–4513.
Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353.
Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning—I. Information sciences8(3), 199-249.