حسابان مالیاوین در استنباط آماری فازی: کران پایین کرامر-رائو برای متغیر‌های تصادفی فازی

نوع مقاله: مقاله پژوهشی

نویسندگان

گروه ریاضی، دانشگاه دریانوردی و علوم دریایی چابهار، چابهار، ایران.

چکیده

کران پایین کرامر-رائو با استفاده از انتگرال‌گیری جزءبه‌جزء و نامساوی کوشی شوارتز به دست می‌آید. انتگرال‌گیری جزءبه‌جزء در حسابان مالیاوین در این مطالعه نقش خواهد داشت. تخمین نقطه‌ای در آمار و احتمالات بسیار حیاتی است و طیف گسترده‌ای از کاربردها را دارد. مشکل تخمین نقطه‌ای بسیار حیاتی است و طیف گسترده‌ای از کاربردها دارد. هنگامی که با برخی مفاهیم مانند متغیرهای تصادفی مقابله می‌کنیم، پارامترهای موردنظر و برآورد‌ها ممکن است غیردقیق مشاهده شوند. بنابراین، نظریه‌ی مجموعه‌های فازی در شکل‌دادن چنین شرایطی اهمیت دارد. با استفاده از نظریه‌ی‌ مجموعه‌ی فازی، متغیر تصادفی با مقدار فازی و فرایند تصادفی فازی را تعریف می‌کنیم. به‌منظور مطالعه خاصیت‌های مجانبی مدل آماری برای متغیرهای تصادفی فازی، از مشتق مالیاوین و انتگرال اسکورهود استفاده می‌کنیم. چگونگی استفاده از امیدهای شرطی عبارات معین، برای به‌دست آوردن کران‌های پایین کرامر-رائو برای متغیرهای تصادفی با مقادیر فازی، که نیازی به بیان صریح تابع احتمالی نداشته باشند، را نشان می‌دهیم. به‌عنوان مثال، نمونه‌ای تصادفی فازی به‌اندازه nرا که به‌وسیله متغیرهای تصادفی توزیع نرمال مستقل با پارامتر فازی ایجاد شده است، موردبررسی قرار می‌دهیم.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Malliavin calculus in statistical inference: Cramer-Rao lower bound for fuzzy random variables

نویسندگان [English]

  • Hossein Jafari
  • Mohammad Javad Ebadi
Department of Mathematics, Chabahar Maritime University, Chabahar, Iran.
چکیده [English]

The Cramer-Rao lower bound is obtained by using integration by parts and the Cauchy-Schwarz inequality.  The integration by parts formulas of Malliavin calculus plays a role in this study. The point estimation problem is very crucial and has a wide range of applications. When we deal with some concepts such as random variables, the parameters of interest and estimates may be observed as imprecise. Therefore, the theory of fuzzy sets is important in formulating such situations. Using the fuzzy set theory, we define a fuzzy-valued random variable and fuzzy stochastic process.  We use the Malliavin derivative and Skorohod integral to study the asymptotic properties of the statistical model for fuzzy random variables. We show how to use the conditional expectations of certain expressions to derive Cramer-Rao lower bounds for Fuzzy valued Random Variables that they do not require the explicit expression of the likelihood function. As an example, we consider a fuzzy random sample of size n induced by independent standard normally distributed random variables with fuzzy parameter.



 




 

کلیدواژه‌ها [English]

  • Malliavin derivative
  • Skorohod integral
  • fuzzy random variable
  • Cramer-Rao lower bound
Akbari, M. G., & Rezaei, A. (2007). An uniformly minimum variance unbiased point estimator using fuzzy observations. Austrian journal of statistics, 36(4), 307-317.
Akbari, M.G., & Khanjari Sadegh, M. (2012). Estimators based on fuzzy random variables and their mathematical properties. Iranian journal of fuzzy systems, 9(1), 79-95.
Buckley, J. J. (2005). Fuzzy probabilities: new approach and applications (Vol. 115). Springer Science & Business Media.
Buckley, J. J. (2006). Fuzzy probability and statistics (pp. 223-234). Heidelberg: Springer.
Corcuera, J. M., & Kohatsu-Higa, A. (2011). Statistical inference and Malliavin calculus. In Seminar on stochastic analysis, random fields and applications, (pp. 59-82). Springer.
Ebadi, M. J., Suleiman, M., Ismail, F. B., Ahmadian, A., Shahryari, M. R., & Salahshour, S. (2013). A new distance measure for trapezoidal fuzzy numbers. Mathematical problems in engineering.
Farahani, H., Ebadi, M.J., & Jafari, H. (2019). Finding inverse of a fuzzy matrix using eigenvalue method, International Journal of innovative technology and exploring engineering, 9(2), 3030-3037.
Gobet, E. (2001). Local asymptotic mixed normality property for elliptic diffusion: a Malliavin calculus approach.    Bernoulli, 7(6), 899-912.
Itô, K. (1951). Multiple wiener integral. Journal of the mathematical society of Japan, 3(1), 157-169.
Jafari, H., Paripour, M., & Farahani, H. (2018). Fuzzy Malliavin derivative and linear Skorohod fuzzy stochastic differential equation, Journal of intelligent & fuzzy systems, 35(2), 2447-2458.                                                                                                                                                                                                                                                                                   
Kumar Das, S., & Mandal, T. (2017). A new model for solving fuzzy linear fractional programming problem with ranking function. Journal of applied research on industrial engineering, 4(2), 89–96.
Montazeri, F. Z. (2019). The survey of data envelopment analysis models in fuzzy stochastic environments. International journal of research in industrial engineering, 8(4), 366–383.
Nualart, D. (2006). The Malliavin calculus and related topics (Vol. 1995). Berlin: Springer.
Sanz-Solé, M. (2005). Malliavin calculus with applications to stochastic partial differential equations. EPFL press.
Taghi-Nezhad, N., & Taleshian, F. (2018). A solution approach for solving fully fuzzy quadratic programming problems. Journal of applied research on industrial engineering, 5(1), 50–61.                                                               
Torabi, H. (2006). Cramér-Rao lower bound for fuzzy-valued random variables. Austrian journal of statistics, 35(4), 471-482.
Viertl, R. (2006). Univariate statistical analysis with fuzzy data. Computational statistics & data analysis, 51(1), 133-147.