بهبود اثربخشی و کارایی زنجیره تأمین حلقه بسته: رویکرد الگوریتم بهینه‌سازی وال و رمزگذاری جدید مبتنی بر اولویت

نوع مقاله: مقاله پژوهشی

نویسنده

پژوهشکده توسعه و برنامه ریزی جهاد دانشگاهی، تبریز، ایران

10.22105/dmor.2020.206930.1132

چکیده

با گسترش و افزایش شدت رقابت، مدیریت زنجیره تامین به یکی از مسائل اساسی پیش روی بنگاه های اقتصادی تبدیل شده است؛ طوری که همه فعالیت های سازمان ها را به منظور تولید محصولات، بهبود کیفیت، کاهش هزینه ها و ارائه خدمات مورد نیاز مشتریان تحت تاثیر داده است. در این تحقیق یک شبکه زنجیره تأمین حلقه بسته شامل سطوح مراکز تولیدی، مناطق مشتری، مراکز جمع‌آوری و مراکز انهدام و در حالت قطعی در نظر گرفته ‌شده است. هدف اصلی این مقاله، تعیین تعداد و مکان بهینه تسهیلات بالقوه و همچنین تعیین مقدار بهینه جریان با در نظر گرفتن کاهش هزینه‌های کل شبکه زنجیره تأمین می‌باشد. برای حل این مدل از یک الگوریتم فرا ابتکاری جدید به نام الگوریتم بهینه‌سازی وال با رمزگذاری جدید مبتنی بر اولویت استفاده‌شده است. برای نشان دادن کارایی بالای رمزگذاری مبتنی بر اولویت، 21 مسئله نمونه در سه سایز کوچک، متوسط و بزرگ طراحی شده است و نتایج به‌دست‌آمده از این رمزگذاری و سایر رمزگذاری‌ها با یکدیگر مقایسه شده است. مقایسات بین رمزگذاری‌های مسئله، با در نظر گرفتن دو شاخص میانگین تابع هدف و میانگین زمان محاسباتی، نشان از کارایی بالای رمزگذاری پیشنهادی در مقایسه با دیگر رمزگذاری‌ها دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Improvement the efficiency and efficiency of the closed loop supply chain: Whale optimization algorithm and novel priority-based encoding approach

نویسنده [English]

  • javid ghahremani nahr
Academic Center for Education, culture and Research, Tabriz, Iran.
چکیده [English]

With the expansion and intensification of competition, supply chain management has become one of the key issues facing economic firms, as all the activities of organizations to produce products, improve quality, reduce costs and provide services required by customers, has been affected. In this research, a closed loop supply chain network include levels of (manufacturing centers, demand zones, collection centers and disposal centers) under certainty is considered. The main objective of this paper is to determine the optimal number and location of potential facilities and determine the optimal flow considering the minimization total supply chain network cost. To solve this model, a new metaheuristics algorithm called the whale Optimization algorithm has been used with novel priority-based encoding. Also, to demonstrate the high efficiency of the proposed method, 21 sample problems were designed in small, medium and large sizes, and the results obtained from the solving method and the results obtained from the methodology for solving the subject literature were compared. Comparisons between solving methods with consideration of the two averages of the objective functions and the average computational time indicate the efficiency of the proposed solution method for the comparison of the other methods of solving.

کلیدواژه‌ها [English]

  • Closed-loop supply chain
  • Whale Optimization Algorithm
  • Novel priority-based encoding
رحیمی، ا؛ حسین زاده سلجوقی، ف. (1396). مدل برنامه‌ریزی چند‌هدفه برای تعیین کارایی و بازده‌به‌مقیاس زنجیره‌تامین دو‌مرحله‌ای (مطالعه موردی: شرکت‌های رزین ایران). تصمیم گیری و تحقیق در عملیات، 2(3)، ص 227-213.

محمودی، ا؛ مجیبیان، ف؛ نوری ثابت، الف. (1398). ارائه یک مدل ریاضی جهت انتخاب تامین کننده در زنجیره تامین با درنظرگیری مسائل کنترل موجودی و قیمت گذاری. تصمیم گیری و تحقیق در عملیات، 4(3)، ص 231-221.

Achillas, C., Vlachokostas, C., Aidonis, D., Moussiopoulos, Ν, Iakovou, E., & Banias, G. (2010). Optimising reverse logistics network to support policy-making in the case of electrical and electronic equipment. Waste Management, 30(12), 2592-2600.

Ahmadzadeh, E., & Vahdani, B. (2017). A location-inventory-pricing model in a closed loop supply chain network with correlated demands and shortages under a periodic review system. Computers & chemical engineering101, 148-166.

Chen, X., Chuluunsukh, A., Yun, Y., & Gen, M. (2018, August). Optimization of closed-loop supply chain model using hybrid genetic algorithm approach for tire industry in Korea. In International conference on management science and engineering management (pp. 1593-1612). Springer, Cham.

Das, K., & Chowdhury, A. H. (2012). Designing a reverse logistics network for optimal collection, recovery and quality-based product-mix planning. International journal of production economics, 135(1), 209-221.

Eskandarpour, M., Zegordi, S. H., & Nikbakhsh, E. (2013). A parallel variable neighborhood search for the multi-objective sustainable post-sales network design problem. International journal of production economics, 145(1), 117-131.

Gen, M., Altiparmak, F., & Lin, L. (2006). A genetic algorithm for two-stage transportation problem using priority-based encoding. OR spectrum, 28(3), 337-354.

Gen, M., & Cheng, R. (1996). Genetic Algorithms and Manufacturing Systems Design. John Wiley & Sons, Inc.

Ghahremani-Nahr, J., Kian, R., & Sabet, E. (2019). A robust fuzzy mathematical programming model for the closed-loop supply chain network design and a whale optimization solution algorithm. Expert systems with applications116, 454-471.

Ghahremani Nahr, J., Kian, R., & Rezazadeh, H. (2018). A modified priority-based encoding for design of a closed-loop supply chain network using a discrete league championship algorithm. Mathematical problems in engineering2018.

Goldbogen, J. A., Friedlaender, A. S., Calambokidis, J., Mckenna, M. F., Simon, M., & Nowacek, D. P. (2013). Integrative approaches to the study of baleen whale diving behavior, feeding performance, and foraging ecology. Bioscience63(2), 90-100.

Govindan, K., Soleimani, H., & Kannan, D. (2015). Reverse logistics and closed-loop supply chain: A comprehensive review to explore the future. European journal of operational research240(3), 603-626.

Jamshidi, R., Ghomi, S. F., & Karimi, B. (2012). Multi-objective green supply chain optimization with a new hybrid memetic algorithm using the Taguchi method. Scientia iranica19(6), 1876-1886.

Lee, J. E., Gen, M., & Rhee, K. G. (2009). Network model and optimization of reverse logistics by hybrid genetic algorithm. Computers & industrial engineering, 56(3), 951-964.

Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in engineering software95, 51-67.

Mousazadeh, M., Torabi, S. A., & Zahiri, B. (2015). A robust possibilistic programming approach for pharmaceutical supply chain network design. Computers & chemical engineering, 82, 115-128.

Nobil, A. H., & Taleizadeh, A. A. (2016). Analysing a fuzzy integrated inventory-production-distribution planning problem with maximum NPV of cash flows in a closed-loop supply chain. International journal of inventory research3(1), 31-48.

Pasandideh, S. H. R., & Asadi, K. (2016). A priority-based modified encoding–decoding procedure for the design of a bi-objective SC network using meta-heuristic algorithms. International journal of management science and engineering management11(1), 8-21.

Rad, R. S., & Nahavandi, N. (2018). A novel multi-objective optimization model for integrated problem of green closed loop supply chain network design and quantity discount. Journal of cleaner production196, 1549-1565.

Soleimani, H., Govindan, K., Saghafi, H., & Jafari, H. (2017). Fuzzy multi-objective sustainable and green closed-loop supply chain network design. Computers & industrial engineering109, 191-203.

Zandieh, M., & Chensebli, A. (2016). Reverse logistics network design: a water flow-like algorithm approach. opsearch53(4), 667-692.

Zohal, M., & Soleimani, H. (2016). Developing an ant colony approach for green closed-loop supply chain network design: a case study in gold industry. Journal of cleaner production133, 314-337.