نوع مقاله : مقاله پژوهشی - کاربردی

نویسندگان

گروه مدیریت صنعتی، دانشکده کسب و کار و اقتصاد ، دانشگاه خلیج فارس، بوشهر، ایران.

چکیده

هدف: دریک شهر، بخش‌­های مختلفی در فعالیت هستند و هر بخش نیز در تولید مواد زاید شهری نقش دارد که این موضوع باعث توجه به روش­‌های مدیریت پسماند می‌­شود. در پژوهش حاضر به تبیین مدلی جهت شناسایی عوامل موثر بر تولید انواع پسماند در شهر بوشهر پرداخته شده است.
روش‌شناسی پژوهش: ابعاد اصلی مدل مذکور از بررسی ادبیات نظری در حوزه مدیریت پسماند شهری گرفته شده است. همچنین از رویکرد سیستم‌های پویا برای شناسایی استراتژی‌های مدیریت پسماند شهری استفاده شده است. در این پژوهش سعی شده است که ابتدا عوامل موثر بر تولید پسماند شهری شناسایی و با استفاده از سیستم‌های پویا مدل‌سازی شود. دلایل استفاده از رویکرد سیستم‌های پویا برای این تحقیق را نیز می‌توان به‌صورت زیر برشمرد: 1- رویکرد مناسب در تعیین و پیش‌بینی اثرات فاکتو‌های موثر بر تولید پسماند، 2- کمک به درک روابط بین متغیرها و بررسی رفتار و ساختار سیستم‌ها به‌ویژه سیستم‌های پیچیده (ایجاد یک مدل مفهومی)، 3- یک رویکرد انعطاف‌پذیر با قابلیت تحلیل کمی و کیفی، 4- قابلیت بررسی سیستم در آینده تحت سناریوها و سیاست‌های مختلف تصمیم‌گیرندگان، 5- مدل‌های سیستم پویا به‌عنوان مدل‌های شبیه‌سازی در نظر گرفته می‌شوند؛ بنابراین، آن‌ها مزایای استفاده از روش شبیه‌سازی را نسبت به روش‌های تجزیه‌وتحلیل دارند. در گام بعدی عوامل داخلی و خارجی سازمان در زمینه مدیریت پسماند شهری و با استناد به روش تحلیل SWOT، راهکارهای مدیریت پسماند شهری در بوشهر اجرا شد.
یافته‌ها: نتایج روش SWOT نشان داد که آستانه آسیب­‌پذیری مدیریت پسماند شهری در بوشهر بسیار بالاست و نیازمند ارایه سیاست­‌های مناسب در جهت رفع ضعف‌­ها و تهدیدها با استفاده از نقاط قوت و فرصت­‌ها می‌­باشد. در گام بعد جهت رتبه‌­بندی استراتژی‌­های چهارگانه از روش غیرخطی میخایلفوف استفاده شد. نتایج استفاده از این رویکرد نشان می‌­دهد که در بین استراتژی‌­های SO، استراتژی افزایش آگاهی و تغییر نگرش شهروندان نسبت به نحو صحیح مدیریت پسماند در رتبه نخست قرار دارد. در بین استراتژی‌­های ST، فرهنگ‌­سازی جهت استفاده از ظروف قابل بازیافت با وزن 0/51 در رتبه نخست قرار گرفته است. به‌­کارگیری افراد آگاه برای تفکیک پسماند و دفن مناسب در بین استراتژی‌­های WT، با وزن 0/57 در رتبه اول قرار گرفت و در نهایت استراتژی تشویق بخش خصوصی جهت سرمایه‌­گذاری با وزن معادل با 0/43 در بین استراتژی‌­های WO در رتبه اول قرار گرفت. آلودگی حاصل از مدیریت ضعیف پسماندها در مناطق شهری پیامدهای جبران­‌ناپذیر از نظر بهداشتی و زیباشناختی به جامعه تحمیل می‌­کند. ابتلا به انواع بیماری‌­ها از جمله تبعات ناشی از ضعف در مدیریت پسماندهای شهری می‌­باشد. همچنین مسایل زیست‌محیطی در راس همه مسایل انسانی قرار گرفته است.
اصالت/ارزش‌افزوده علمی: در این پژوهش سعی شده است نو‌آوری را از سه جنبه خلا نظری، خلا تکنیکی و همچنین خلا ‌کاربردی مورد‌‌بررسی دقیق قرار گیرد؛ به‌عبارت‌دیگر برطرف نمودن این سه خلا را می­‌توان به‌عنوان نقاط قوت پژوهش حاضر در مقایسه با سایر پژوهش‌های انجام‌شده در این حوزه در نظر گرفت. از منظر نظری سعی شده است که مطالعه نسبتا جامعی از عوامل موثر بر مدیریت پسماند شهری برای تدوین استراتژی‌­ها انجام گردد. همچنین از منظر تکنیکی پژوهش حاضر، با تمرکز بر تلفیق منطق فازی با رویکرد مدل‌­سازی سیستم‌های پویا و روش دلفی دارای نوآوری می‌باشد. در نهایت سعی گردیده است با تدوین استراتژی­‌های بهینه از خلا کاربردی که در پژوهش­‌های پیشین انجام‌شده در این حوزه انجام شده است، کاسته گردد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Application of dynamic systems modeling approach to rank optimal urban waste management strategies using SWOT method

نویسندگان [English]

  • Hamid Shahbandarzadeh
  • Mohammad Hossein Kabgani

Department of Industrial Management, Faculty of Business and Economics, Persian Gulf University, Bushehr, Iran.

چکیده [English]

Purpose: In a city, there are different sectors in operation, and each sector also plays a role in the production of municipal waste, which draws attention to waste management methods. The present study explains a model to identify the factors affecting waste production in Bushehr.
Methodology: The main dimensions of the model are taken from the review of the theoretical literature. A dynamic systems approach has also been used to identify urban waste management strategies. First, we identified and modelled the factors affecting municipal waste production with dynamic systems. The reasons for using the dynamic systems approach for this research can also be enumerated as follows: 1) an appropriate approach in determining and predicting the effects of factors affecting waste production, 2) helping to understand the relationships between variables and examining the behaviour and structure of systems, incredibly complex systems (creating a conceptual model), 3) a flexible approach with the ability to analyze quantitatively and qualitatively, 4) the ability to review the system in the future under different scenarios and policies of decision makers and 5) dynamic system models are considered as simulation models; therefore, they have the advantages of using the simulation method over the analysis methods. In the next step, the organization's internal and external factors in urban waste management were performed by referring to the SWOT analysis method, urban waste management strategies in Bushehr.
Findings:  The results of the SWOT method showed that the vulnerability threshold of urban waste management in Bushehr is very high, and it is necessary to provide appropriate policies to address weaknesses and threats using strengths and opportunities. In the next step, Mikhailov's nonlinear method was used to rank the four strategies. This approach shows that among SO strategies, increasing awareness and changing citizens' attitudes towards proper waste management is in the first place. Among ST strategies, culturing for recyclable containers weighing 0.51 is in the first place. Employing knowledgeable people for proper waste segregation and disposal among WT strategies, with a weight of 0.57, was ranked first, and finally, the strategy of encouraging the private sector to invest, with a weight equivalent to 0.43 among WO strategies, Ranked first. Pollution from poor waste management in urban areas imposes irreversible health and aesthetic consequences on society. Among the consequences of poor waste management will be a variety of diseases. Environmental issues are also at the top of all human problems.
Originality/Value:  In this research, an attempt has been made to examine innovation from three aspects: theoretical, technical and practical gaps, which can be mentioned as the strengths of the current research compared to other research. From a theoretical point of view, it has been tried to conduct a relatively comprehensive study of factors affecting urban waste management to formulate strategies. Also, from the technical point of view, the current research is innovative by focusing on combining fuzzy logic with the dynamic systems modelling approach and the Delphi method. Finally, it has been tried to reduce the practical vacuum of previous research in this field by formulating optimal strategies.

کلیدواژه‌ها [English]

  • Waste management
  • Dynamic systems
  • SWOT approach
  • Delphi method
  • Fuzzy
[1]  Šomplák, R., Kůdela, J., Smejkalová, V., Nevrlý, V., Pavlas, M., & Hrabec, D. (2019). Pricing and advertising strategies in conceptual waste management planning. Journal of cleaner production, 239, 118068. https://www.sciencedirect.com/science/article/pii/S0959652619329385
[2]  Lu, H. W., Huang, G. H., He, L., & Zeng, G. M. (2009). An inexact dynamic optimization model for municipal solid waste management in association with greenhouse gas emission control. Journal of environmental management, 90(1), 396–409. https://www.sciencedirect.com/science/article/pii/S0301479707003878
[3]  Zhang, X., & Huang, G. (2013). Optimization of environmental management strategies through a dynamic stochastic possibilistic multiobjective program. Journal of hazardous materials, 246247, 257–266. https://www.sciencedirect.com/science/article/pii/S0304389412012046
[4]  Li, P., & Chen, B. (2011). FSILP: Fuzzy-stochastic-interval linear programming for supporting municipal solid waste management. Journal of environmental management, 92(4), 1198–1209. https://www.sciencedirect.com/science/article/pii/S0301479710004548
[5]  He, L., Huang, G. H., & Lu, H. (2011). Greenhouse gas emissions control in integrated municipal solid waste management through mixed integer bilevel decision-making. Journal of hazardous materials, 193, 112–119. https://www.sciencedirect.com/science/article/pii/S0304389411009174
[6]  Fan, Y. Van, Klemeš, J. J., Walmsley, T. G., & Bertók, B. (2020). Implementing Circular Economy in municipal solid waste treatment system using P-graph. Science of the total environment, 701, 134652. https://www.sciencedirect.com/science/article/pii/S0048969719346431
[7]  Ma, J., & Sun, L. (2015). Complex dynamics of a MC–MS pricing model for a risk-averse supply chain with after-sale investment. Communications in nonlinear science and numerical simulation, 26(1), 108–122. https://www.sciencedirect.com/science/article/pii/S1007570415000350
[8]  Pantelitsa, L., Irene, V., & Zorpas, A. A. (2018). Boosting regulations legislation reliefs regarding environmental management systems in the framework of EMAS and ISO 14001: Case study of cyprus. The international journal of thermal \& environmental engineering, 17, 19–27. https://www.academia.edu/download/88486925/ijtee.17.01.pdf
[9]  Kinnaman, T. C. (2006). Policy Watch: Examining the Justification for Residential Recycling. Journal of economic perspectives, 20(4), 219–232. https://www.aeaweb.org/articles?id=10.1257/jep.20.4.219
[10] Zhu, Q., Sarkis, J., & Lai, K. (2008). Green supply chain management implications for “closing the loop.” Transportation research part e: logistics and transportation review, 44(1), 1–18. https://www.sciencedirect.com/science/article/pii/S1366554506000652
[11] Agovino, M., Cerciello, M., & Gatto, A. (2018). Policy efficiency in the field of food sustainability. The adjusted food agriculture and nutrition index. Journal of environmental management, 218, 220–233. https://www.sciencedirect.com/science/article/pii/S0301479718304407
[12]  Mathiyazhagan, K., Govindan, K., NoorulHaq, A., & Geng, Y. (2013). An ISM approach for the barrier analysis in implementing green supply chain management. Journal of cleaner production, 47, 283–297. https://www.sciencedirect.com/science/article/pii/S0959652612005744
[13]  Zorpas, A. A. (2016). Sustainable waste management through end-of-waste criteria development. Environmental science and pollution research, 23(8), 7376–7389. https://doi.org/10.1007/s11356-015-5990-5
[14]  Arena, U., & Di Gregorio, F. (2014). A waste management planning based on substance flow analysis. Resources, conservation and recycling, 85, 54–66. https://www.sciencedirect.com/science/article/pii/S0921344913001274
[15]  Minciardi, R., Paolucci, M., Robba, M., & Sacile, R. (2008). Multi-objective optimization of solid waste flows: Environmentally sustainable strategies for municipalities. Waste management, 28(11), 2202–2212. https://www.sciencedirect.com/science/article/pii/S0956053X07003418
[16]  Galante, G., Aiello, G., Enea, M., & Panascia, E. (2010). A multi-objective approach to solid waste management. Waste management, 30(8), 1720–1728. https://www.sciencedirect.com/science/article/pii/S0956053X10000905
[17]  Das, S. K. (2021). Optimization of fuzzy linear fractional programming problem with fuzzy numbers. Big data and computing visions, 1(1), 30–35. https://www.bidacv.com/article_142084.html
[18]  Li, Y. P., Huang, G. H., & Nie, S. L. (2012). A mathematical model for identifying an optimal waste management policy under uncertainty. Applied mathematical modelling, 36(6), 2658–2673. https://www.sciencedirect.com/science/article/pii/S0307904X11006056
[19]  Mavrotas, G., Skoulaxinou, S., Gakis, N., Katsouros, V., & Georgopoulou, E. (2013). A multi-objective programming model for assessment the GHG emissions in MSW management. Waste management, 33(9), 1934–1949. https://www.sciencedirect.com/science/article/pii/S0956053X13002043
[20]  Jabbour, C. J. C., & de Sousa Jabbour, A. B. L. (2016). Green human resource management and green supply chain management: linking two emerging agendas. Journal of cleaner production, 112, 1824–1833. https://www.sciencedirect.com/science/article/pii/S0959652615000566
[21]  Wang, X., Chan, H. K., Yee, R. W. Y., & Diaz-Rainey, I. (2012). A two-stage fuzzy-AHP model for risk assessment of implementing green initiatives in the fashion supply chain. International journal of production economics, 135(2), 595–606. https://www.sciencedirect.com/science/article/pii/S0925527311001423
[22]  Gonçalves, J. F., Mendes, J. J. M., & Resende, M. G. C. (2008). A genetic algorithm for the resource constrained multi-project scheduling problem. European journal of operational research, 189(3), 1171–1190. https://www.sciencedirect.com/science/article/pii/S0377221707005929
[23]  Farnam, M., & Darehmiraki, M. (2022). Supply chain management problem modelling in hesitant fuzzy environment. Journal of fuzzy extension and applications, 3(4), 317–336. https://www.journal-fea.com/article_155277.html
[24]  Ng, K. S., & Yang, A. (2023). Development of a system model to predict flows and performance of regional waste management planning: A case study of England. Journal of environmental management, 325, 116585. https://www.sciencedirect.com/science/article/pii/S0301479722021582
[25]  Kala, K., Bolia, N. B., & others. (2022). Analysis of informal waste management using system dynamic modelling. Heliyon, 8(8), 1–11. https://www.cell.com/heliyon/pdf/S2405-8440(22)01281-6.pdf