Document Type : original-application paper


Department of Mathematics, Isfahan Branch (Khorasgan), Islamic Azad University, Isfahan, Iran.


Purpose: This study aims to tackle the challenging facility location selection problem in Multiple Criteria Decision Making (MCDM) scenarios, explicitly focusing on type-1 fuzzy MCDM issues. The research introduces Interval Valued Fuzzy Numbers (IVFNs) to express ratings, addressing the difficulty in determining precise membership degrees for fuzzy sets.
Methodology: The proposed IVF-COPRAS method, centered on uncertainty risk reduction, is employed to enhance decision-making reliability in IVF decision problems. This methodology is applied to a real-world case involving the selection of a location for municipal wet waste landfill pits in a major Iranian city. Comparative analyses with other methods are conducted to assess the proposed approach.
Findings: The study demonstrates the effectiveness of the IVF-COPRAS method in addressing facility location selection problems within MCDM. By utilizing IVFNs, the method successfully manages uncertainty, leading to more reliable decisions. Application to a practical scenario highlights the method's efficacy, and the comparative analysis provides insights into its performance relative to other methods.
Originality/Value: This research contributes a novel approach with the IVF-COPRAS method for handling facility location selection challenges in MCDM. The reliance on IVFNs offers a unique perspective on uncertainty in decision-making, enhancing decision reliability. The real-world application emphasizes the method's practical significance, providing a valuable contribution to MCDM research and offering a methodological tool for similar decision-making problems across diverse domains.


Main Subjects

[1] Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338–353.
[2] Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy sets and systems, 20(1), 87–96.
[3] Turksen, I. B. (1986). Interval valued fuzzy sets based on normal forms. Fuzzy sets and systems, 20(2), 191–210. DOI:10.1016/0165-0114(86)90077-1
[4] Gorzałczany, M. B. (1987). A method of inference in approximate reasoning based on interval-valued fuzzy sets. Fuzzy sets and systems, 21(1), 1–17. DOI:10.1016/0165-0114(87)90148-5
[5] Wang, G., & Li, X. (1998). The applications of interval-valued fuzzy numbers and interval-distribution numbers. Fuzzy sets and systems, 98(3), 331–335. DOI:10.1016/s0165-0114(96)00368-5
[6] Wang, G., & Li, X. (1999). Correlation and information energy of interval-valued fuzzy numbers. Fuzzy sets and systems, 103(1), 169–175. DOI:10.1016/S0165-0114(97)00303-5
[7]     Wang, G. J., & He, Y. Y. (2000). Intuitionistic fuzzy sets and L-fuzzy sets. Fuzzy sets and systems, 110(2), 271–274.
[8]     Hong, D. H., & Lee, S. (2002). Some algebraic properties and a distance measure for interval-valued fuzzy numbers. Information sciences, 148(1–4), 1–10.
[9]     Tsaur, S. H., Chang, T. Y., & Yen, C. H. (2002). The evaluation of airline service quality by fuzzy MCDM. Tourism management, 23(2), 107–115.
[10]   Deschrijver, G. (2007). Arithmetic operators in interval-valued fuzzy set theory. Information sciences, 177(14), 2906–2924. DOI:10.1016/j.ins.2007.02.003
[11]   Grzegorzewski, P. (2004). Distances between intuitionistic fuzzy sets and/or interval-valued fuzzy sets based on the Hausdorff metric. Fuzzy sets and systems, 148(2), 319–328. DOI:10.1016/j.fss.2003.08.005
[12]   Chen, L. H., & Ouyang, L. Y. (2006). Fuzzy inventory model for deteriorating items with permissible delay in payment. Applied mathematics and computation, 182(1), 711–726.
[13]   Kaklauskas, A., Zavadskas, E. K., Raslanas, S., Ginevicius, R., Komka, A., & Malinauskas, P. (2006). Selection of low-e windows in retrofit of public buildings by applying multiple criteria method COPRAS: A Lithuanian case. Energy and buildings, 38(5), 454–462. DOI:10.1016/j.enbuild.2005.08.005
[14]   Wang, Y. M., Yang, J. B., Xu, D. L., & Chin, K. S. (2007). On the combination and normalization of interval-valued belief structures. Information sciences, 177(5), 1230–1247.
[15]   Chen, J. H., & Chen, S. M. (2007). A new method to measure the similarity between interval-valued fuzzy numbers. Proceedings of the sixth international conference on machine learning and cybernetics, ICMLC 2007 (Vol. 3, pp. 1403–1408). IEEE. DOI: 10.1109/ICMLC.2007.4370364
[16]   Ertuǧrul, I., & Karakaşoǧlu, N. (2009). Performance evaluation of Turkish cement firms with fuzzy analytic hierarchy process and TOPSIS methods. Expert systems with applications, 36(1), 702–715. DOI:10.1016/j.eswa.2007.10.014
[17]   Deschrijver, G., & Kerre, E. E. (2007). On the position of intuitionistic fuzzy set theory in the framework of theories modelling imprecision. Information sciences, 177(8), 1860–1866. DOI:10.1016/j.ins.2006.11.005
[18]   Shih, H. S., Shyur, H. J., & Lee, E. S. (2007). An extension of TOPSIS for group decision making. Mathematical and computer modelling, 45(7–8), 801–813. DOI:10.1016/j.mcm.2006.03.023
[19]   Wang, H. Y., & Chen, S. M. (2008). Evaluating students’ answerscripts using fuzzy numbers associated with degrees of confidence. IEEE transactions on fuzzy systems, 16(2), 403–415. DOI:10.1109/TFUZZ.2007.895958
[20]   Lee, W. S., Tzeng, G. H., Guan, J. L., Chien, K. T., & Huang, J. M. (2009). Combined MCDM techniques for exploring stock selection based on Gordon model. Expert systems with applications, 36(3), 6421–6430.
[21]   Rao, R. V., & Davim, J. P. (2008). A decision-making framework model for material selection using a combined multiple attribute decision-making method. International journal of advanced manufacturing technology, 35(7–8), 751–760. DOI:10.1007/s00170-006-0752-7
[22]   Chen, S. M., Wang, N. Y., & Pan, J. S. (2009). Forecasting enrollments using automatic clustering techniques and fuzzy logical relationships. Expert systems with applications, 36(8), 11070–11076. DOI:10.1016/j.eswa.2009.02.085
[23]   Ashtiani, B., Haghighirad, F., Makui, A., & ali Montazer, G. (2009). Extension of fuzzy TOPSIS method based on interval-valued fuzzy sets. Applied soft computing, 9(2), 457–461.
[24]   Wang, Z. X., Niu, L. L., Wu, R. X., & Lan, J. B. (2014). Multicriteria decision-making method based on risk attitude under interval-valued intuitionistic fuzzy environment. Fuzzy information and engineering, 6(4), 489–504. DOI:10.1016/j.fiae.2015.01.006
[25]   Rashid, T., Beg, I., & Husnine, S. M. (2014). Robot selection by using generalized interval-valued fuzzy numbers with TOPSIS. Applied soft computing journal, 21, 462–468. DOI:10.1016/j.asoc.2014.04.002
[26]   Mokhtarian, M. N., Sadi-Nezhad, S., & Makui, A. (2014). A new flexible and reliable IVF-TOPSIS method based on uncertainty risk reduction in decision making process. Applied soft computing journal, 23, 509–520. DOI:10.1016/j.asoc.2014.05.035
[27]   Nguyen, H. T., Md Dawal, S. Z., Nukman, Y., Aoyama, H., & Case, K. (2015). An integrated approach of fuzzy linguistic preference based AHP and fuzzy COPRAS for machine tool evaluation. PLoS one, 10(9), e0133599. DOI:10.1371/journal.pone.0133599
[28]   Das, S., Kar, S., & Pal, T. (2017). Robust decision making using intuitionistic fuzzy numbers. Granular computing, 2(1), 41–54. DOI:10.1007/s41066-016-0024-3
[29]   Meng, S., Liu, N., & He, Y. (2017). GIFIHIA operator and its application to the selection of cold chain logistics enterprises. Granular computing, 2(3), 187–197. DOI:10.1007/s41066-017-0038-5
[30]   Wang, C., Fu, X., Meng, S., & He, Y. (2017). Multi-attribute decision-making based on the SPIFGIA operators. Granular computing, 2(4), 321–331. DOI:10.1007/s41066-017-0046-5
[31]   Mahmood, T., Liu, P., Ye, J., & Khan, Q. (2018). Several hybrid aggregation operators for triangular intuitionistic fuzzy set and their application in multi-criteria decision making. Granular computing, 3(2), 153–168. DOI:10.1007/s41066-017-0061-6
[32]   Joshi, B. P. (2018). Moderator intuitionistic fuzzy sets with applications in multi-criteria decision-making. Granular computing, 3(1), 61–73. DOI:10.1007/s41066-017-0056-3
[33]   Baloui Jamkhaneh, E., & Garg, H. (2018). Some new operations over the generalized intuitionistic fuzzy sets and their application to decision-making process. Granular computing, 3(2), 111–122. DOI:10.1007/s41066-017-0059-0
[34]   Lin, M., Huang, C., & Xu, Z. (2020). MULTIMOORA based MCDM model for site selection of car sharing station under picture fuzzy environment. Sustainable cities and society, 53, 101873. DOI:10.1016/j.scs.2019.101873
[35]   Mahdiyar, A., Mohandes, S. R., Durdyev, S., Tabatabaee, S., & Ismail, S. (2020). Barriers to green roof installation: An integrated fuzzy-based MCDM approach. Journal of cleaner production, 269, 122365. DOI:10.1016/j.jclepro.2020.122365
[36]   Jahangiri, M., Shamsabadi, A. A., Mostafaeipour, A., Rezaei, M., Yousefi, Y., & Pomares, L. M. (2020). Using fuzzy MCDM technique to find the best location in Qatar for exploiting wind and solar energy to generate hydrogen and electricity. International journal of hydrogen energy, 45(27), 13862–13875. DOI:10.1016/j.ijhydene.2020.03.101
[37]   Azizi Nafteh, M., & Shahrokhi, M. (2022). Presenting COPRAS multi-criteria group decision making method using interval and punctual type 2 fuzzy sets. Journal of decisions and operations research, 7(2), 355–372. (In Persian).
[38]   Farnam, M., & Darehmiraki, M. (2022). Interval valued fuzzy sets; application in the decision-making process related to the qualitative qualification of contractors. Journal of decisions and operations research, 7(3), 466–484. (In Persian).
[39]   Dehghani Filabadi, A., & Hesamian, G. (2021). Development of a multi-period multi-attribute group decision-making method using type-2 fuzzy set of linguistic variables. International journal of research in industrial engineering, 10(2), 138–154.
[40]   Kane, L., Diakite, M., Kane, S., Bado, H., & Diawara, D. (2021). Date fully fuzzy transportation problems with pentagonal and hexagonal fuzzy numbers. Journal of applied research on industrial engineering, 8(3), 251–269.
[41]   Khalifa, H. A. (2022). A signed distance for (γ, δ) interval-valued fuzzy numbers to solve multi objective assignment problems with fuzzy parameters. International journal of research in industrial engineering, 11(2), 205–213.
[42]   Saberhoseini, S. F., Edalatpanah, S. A., & Sorourkhah, A. (2022). Choosing the best private-sector partner according to the risk factors in neutrosophic environment. Big data and computing visions, 2(2), 61–68. DOI:10.22105/bdcv.2022.334005.1075
[43]   Dirik, M. (2022). Type-2 fuzzy logic controller design optimization using the PSO approach for ECG prediction. Journal of fuzzy extension and applications, 3(2), 158–168.
[44]   Ebadi Torkayesh, A. E., & Simic, V. (2022). Stratified hybrid decision model with constrained attributes: Recycling facility location for urban healthcare plastic waste. Sustainable cities and society, 77, 103543. DOI:10.1016/j.scs.2021.103543
[45]   Mishra, A. R., Liu, P., & Rani, P. (2022). COPRAS method based on interval-valued hesitant Fermatean fuzzy sets and its application in selecting desalination technology. Applied soft computing, 119, 108570. DOI:10.1016/j.asoc.2022.108570