Document Type : Original Article


1 Department of Industrial Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran.

2 Department of Industrial Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.


Purpose: This paper focuses on modeling a sustainable electricity industry supply chain network under uncertainty. The aim of presenting this supply chain network is to meet customer demands for solar panels to generate clean energy.
Methodology: A mixed-integer linear programming model, including facility location, supplier selection, optimal flow allocation, and determination of the optimal price of solar panels in the network, is considered. The sustainability objectives of the model include maximizing the profit of the supply chain network, minimizing greenhouse gas emissions, and maximizing reliability. A robust optimization method is also considered to control uncertain parameters, and precise and innovative techniques are used to solve the model.
Findings: The results of the model show that with an increase in network reliability, the current net value in the network decreases, and greenhouse gas emissions in the network increase. Additionally, the analysis of the results shows that with an increase in the network's uncertainty rate, the network's current net value and reliability decrease, and greenhouse gas emissions increase. Finally, the statistical test results also show that there was no significant difference between the averages of the number of practical solutions, the maximum spread, and the metric distance between the two algorithms, and only a significant difference exists between the solution times of the two algorithms. The results of the presented solution methods demonstrate their high efficiency in solving the sustainable electricity industry supply chain model.
Originality/Value: In the proposed model, essential decisions such as supplier selection, establishment of production centers, optimal product flow allocation, and pricing of solar panels are made. On the other hand, further analyses of 15 numerical examples show the high efficiency of the MOALO and MOWOA algorithms compared to the epsilon-constraint method.


Main Subjects

[1]     Eskandarpour, M., Dejax, P., Miemczyk, J., & Péton, O. (2015). Sustainable supply chain network design: An optimization-oriented review. Omega, 54, 11–32.
[2]     Rezapour, S., Farahani, R. Z., & Pourakbar, M. (2017). Resilient supply chain network design under competition: A case study. European journal of operational research, 259(3), 1017–1035. DOI:10.1016/j.ejor.2016.11.041
[3]     Pishvaee, M. S., Razmi, J., & Torabi, S. A. (2012). Robust possibilistic programming for socially responsible supply chain network design: A new approach. Fuzzy sets and systems, 206, 1–20.
[4]     Ghomi-Avili, M., Akhavan Niaki, S. T., & Tavakkoli-Moghaddam, R. (2023). A joint pricing and sustainable closed-loop supply chain network design problem using blockchain technology. Journal of industrial and systems engineering, 14(4), 121–137.
[5]     Tsao, Y. C., & Vu, T. L. (2019). Power supply chain network design problem for smart grid considering differential pricing and buy-back policies. Energy economics, 81, 493–502. DOI:10.1016/j.eneco.2019.04.022
[6]     Dehghani, E., Jabalameli, M. S., Naderi, M. J., & Safari, A. (2020). An environmentally conscious photovoltaic supply chain network design under correlated uncertainty: A case study in Iran. Journal of cleaner production, 262, 121434. DOI:10.1016/j.jclepro.2020.121434
[7]     Attari, M. Y. N., Ala, A., & Khalilpourshiraz, Z. (2022). The electric power supply chain network design and emission reduction policy: a comprehensive review. Environmental science and pollution research, 29(37), 55541–55567. DOI:10.1007/s11356-022-21373-w
[8]     Shahbazbegian, V., Hosseini-Motlagh, S. M., & Haeri, A. (2020). Integrated forward/reverse logistics thin-film photovoltaic power plant supply chain network design with uncertain data. Applied energy, 277, 115538. DOI:10.1016/j.apenergy.2020.115538
[9]     Dehghani, E., Jabalameli, M. S., Jabbarzadeh, A., & Pishvaee, M. S. (2018). Resilient solar photovoltaic supply chain network design under business-as-usual and hazard uncertainties. Computers and chemical engineering, 111, 288–310. DOI:10.1016/j.compchemeng.2018.01.013
[10]   Alamerew, Y. A., & Brissaud, D. (2020). Modelling reverse supply chain through system dynamics for realizing the transition towards the circular economy: A case study on electric vehicle batteries. Journal of cleaner production, 254, 120025. DOI:10.1016/j.jclepro.2020.120025
[11]   Rabbani, M., Hosseini-Mokhallesun, S. A. A., Ordibazar, A. H., & Farrokhi-Asl, H. (2020). A hybrid robust possibilistic approach for a sustainable supply chain location-allocation network design. International journal of systems science: operations and logistics, 7(1), 60–75. DOI:10.1080/23302674.2018.1506061
[12]   Abad, A. R. K. K., & Pasandideh, S. H. R. (2022). Green closed-loop supply chain network design with stochastic demand: A novel accelerated benders decomposition method. Scientia Iranica, 29(5E), 2578–2592. DOI:10.24200/sci.2020.53412.3249
[13]   Pahlevan, S. M., Hosseini, S. M. S., & Goli, A. (2021). Sustainable supply chain network design using products’ life cycle in the aluminum industry. Environmental science and pollution research, 1–25. DOI:10.1007/s11356-020-12150-8
[14]   Pourmehdi, M., Paydar, M. M., & Asadi-Gangraj, E. (2020). Scenario-based design of a steel sustainable closed-loop supply chain network considering production technology. Journal of cleaner production, 277, 123298. DOI:10.1016/j.jclepro.2020.123298
[15]   Mohtashami, Z., Aghsami, A., & Jolai, F. (2020). A green closed loop supply chain design using queuing system for reducing environmental impact and energy consumption. Journal of cleaner production, 242, 118452. DOI:10.1016/j.jclepro.2019.118452
[16]   Lotfi, R., Kargar, B., Hoseini, S. H., Nazari, S., Safavi, S., & Weber, G. W. (2021). Resilience and sustainable supply chain network design by considering renewable energy. International journal of energy research, 45(12), 17749–17766. DOI:10.1002/er.6943
[17]   Nili, M., Seyedhosseini, S. M., Jabalameli, M. S., & Dehghani, E. (2021). A multi-objective optimization model to sustainable closed-loop solar photovoltaic supply chain network design: A case study in Iran. Renewable and sustainable energy reviews, 150, 111428.
[18]   Vafadarnikjoo, A., Tavana, M., Chalvatzis, K., & Botelho, T. (2022). A socio-economic and environmental vulnerability assessment model with causal relationships in electric power supply chains. Socio-economic planning sciences, 80, 101156. DOI:10.1016/j.seps.2021.101156
[19]   Rentizelas, A., Trivyza, N., Oswald, S., & Siegl, S. (2022). Reverse supply network design for circular economy pathways of wind turbine blades in Europe. International journal of production research, 60(6), 1795–1814. DOI:10.1080/00207543.2020.1870016
[20]   Boskabadi, A., Mirmozaffari, M., Yazdani, R., & Farahani, A. (2022). Design of a distribution network in a multi-product, multi-period green supply chain system under demand uncertainty. Sustainable operations and computers, 3, 226–237. DOI:10.1016/j.susoc.2022.01.005
[21]   Tirkolaee, E. B., Goli, A., Ghasemi, P., & Goodarzian, F. (2022). Designing a sustainable closed-loop supply chain network of face masks during the COVID-19 pandemic: Pareto-based algorithms. Journal of cleaner production, 333, 130056. DOI:10.1016/j.jclepro.2021.130056
[22]   Salehi-Amiri, A., Zahedi, A., Gholian-Jouybari, F., Calvo, E. Z. R., & Hajiaghaei-Keshteli, M. (2022). Designing a closed-loop supply chain network considering social factors; a case study on avocado industry. Applied mathematical modelling, 101, 600–631. DOI:10.1016/j.apm.2021.08.035
[23]   Rajak, S., Vimal, K. E. K., Arumugam, S., Parthiban, J., Sivaraman, S. K., Kandasamy, J., & Duque, A. A. (2022). Multi-objective mixed-integer linear optimization model for sustainable closed-loop supply chain network: a case study on remanufacturing steering column. Environment, development and sustainability, 24(5), 6481–6507. DOI:10.1007/s10668-021-01713-5
[24]   Hosseini Dehshiri, S. J., Amiri, M., Olfat, L., & Pishvaee, M. S. (2022). Multi-objective closed-loop supply chain network design: A novel robust stochastic, possibilistic, and flexible approach. Expert systems with applications, 206, 117807. DOI:10.1016/j.eswa.2022.117807
[25]   Mogale, D. G., De, A., Ghadge, A., & Aktas, E. (2022). Multi-objective modelling of sustainable closed-loop supply chain network with price-sensitive demand and consumer’s incentives. Computers and industrial engineering, 168, 108105. DOI:10.1016/j.cie.2022.108105
[26]   Safaei, S., Ghasemi, P., Goodarzian, F., & Momenitabar, M. (2022). Designing a new multi-echelon multi-period closed-loop supply chain network by forecasting demand using time series model: a genetic algorithm. Environmental science and pollution research, 29(53), 79754–79768. DOI:10.1007/s11356-022-19341-5
[27]   Chaharmahali, G., Ghandalipour, D., Jasemi, M., & Molla-Alizadeh-Zavardehi, S. (2022). Modified metaheuristic algorithms to design a closed-loop supply chain network considering quantity discount and fixed-charge transportation. Expert systems with applications, 202, 117364. DOI:10.1016/j.eswa.2022.117364
[28]   Akbari-Kasgari, M., Khademi-Zare, H., Fakhrzad, M. B., Hajiaghaei-Keshteli, M., & Honarvar, M. (2022). Designing a resilient and sustainable closed-loop supply chain network in copper industry. Clean technologies and environmental policy, 24(5), 1553–1580. DOI:10.1007/s10098-021-02266-x
[29]   Hamta, N., Ehsanifar, M., & Biglar, A. (2023). Optimization in supply chain design of assembled products: a case study of HEPCO company. Iranian journal of management studies, 16(1), 61–77. DOI:10.22059/IJMS.2022.318236.674424
[30]   Pal, B., Sarkar, A., & Sarkar, B. (2023). Optimal decisions in a dual-channel competitive green supply chain management under promotional effort. Expert systems with applications, 211, 118315. DOI:10.1016/j.eswa.2022.118315
[31]   Barman, A., De, P. K., Chakraborty, A. K., Lim, C. P., & Das, R. (2023). Optimal pricing policy in a three-layer dual-channel supply chain under government subsidy in green manufacturing. Mathematics and computers in simulation, 204, 401–429. DOI:10.1016/j.matcom.2022.08.008