Document Type : Original Article


Department of Industrial Engineering, Faculty of Engineering, Bu-Ali Sina University of Hamedan, Hamedan, Iran.


Purpose: The production routing problem is created by combining the two problems of lot sizing and vehicle routing. Previous research has examined the effectiveness of this combination in reducing costs. In this paper, the production routing problem is considered with the aim of minimizing the risk of production and distribution of hazardous materials. Attention to social and environmental criteria related to sustainability is being increased by researchers today. Hazardous materials are harmful to human health and the environment. Accidents related to these materials often have far-reaching adverse consequences. Risk is a danger measurement criterion for operations related to these materials.
Methodology: The problem is modeled as a mixed integer program. The risk function in the proposed model is nonlinear and depends on the load of the machine, the population risk, and the type of hazardous material. Given that solving the mathematical model with the nonlinear objective function is more difficult, this function is approximated by a piecewise linear function.
Findings: In this research, 8 standard instances have been used to evaluate and solve the model and compare the two nonlinear and linear models. The results show that by using the approximate model, a better answer can be achieved at the same time. Through sensitivity analysis, the effect of changes to production capacity and warehouses on risk has also been looked into.
Originality/Value: This research proposed the production routing problem for hazardous materials according to sustainability criteria using a nonlinear mathematical model and uses a piecewise linear approximation to solve the model.


Main Subjects

[1]        Díaz-Madroñero, M., Mula, J., Jiménez, M., & Peidro, D. (2017). A rolling horizon approach for material requirement planning under fuzzy lead times. International journal of production research, 55(8), 2197–2211. DOI:10.1080/00207543.2016.1223382
[2]        Armentano, V. A., Shiguemoto, A. L., & Løkketangen, A. (2011). Tabu search with path relinking for an integrated productiondistribution problem. Computers and operations research, 38(8), 1199–1209. DOI:10.1016/j.cor.2010.10.026
[3]        Adulyasak, Y., Cordeau, J. F., & Jans, R. (2015). The production routing problem: A review of formulations and solution algorithms. Computers and operations research, 55, 141–152. DOI:10.1016/j.cor.2014.01.011
[4]        Chandra, P., & Fisher, M. L. (1994). Coordination of production and distribution planning. European journal of operational research, 72(3), 503–517. DOI:10.1016/0377-2217(94)90419-7
[5]        Fortes, A., Camargo, R., Muniz, L. R., Lima, F. M. de S., & Cota, F. dos R. (2022). Efficient matheuristics to solve a rich production-routing problem. Computers and industrial engineering, 171, 108369. DOI:10.1016/j.cie.2022.108369
[6]        Erkut, E., & Verter, V. (1998). Modeling of transport risk for hazardous materials. Operations research, 46(5), 625–642. DOI:10.1287/opre.46.5.625
[7]        Holeczek, N. (2019). Hazardous materials truck transportation problems: A classification and state of the art literature review. Transportation research part d: transport and environment, 69, 305–328. DOI:10.1016/j.trd.2019.02.010
[8]        Kané, L., Diakité, M., Kané, S., Bado, H., Konaté, M., & Traoré, K. (2021). A new algorithm for fuzzy transportation problems with trapezoidal fuzzy numbers under fuzzy circumstances. Journal of fuzzy extension and applications, 2(3), 204–225.
[9]        Bianco, L., Caramia, M., & Giordani, S. (2009). A bilevel flow model for HAZMAT transportation network design. Transportation research part c: emerging technologies, 17(2), 175–196. DOI:10.1016/j.trc.2008.10.001
[10]      Kalelkar, A. S., & Brooks, R. E. (1978). Use of multidimensional utility functions in hazardous shipment decisions. Accident analysis and prevention, 10(3), 251–265. DOI:10.1016/0001-4575(78)90016-7
[11]      Pourghade Chobar, A., Sabk ara, M., Moradi Pirbalouti, S., Khadem, M., & Bahrami, S. (2021). A Multi-Objective Location-Routing Problem Model for Multi-Device Relief Logistics under Uncertainty Using Meta-Heuristic Algorithm. Journal of applied research on industrial engineering, 9(3), 354–373.
[12]      Fan, L. (2022). A short study of the components and applications of wireless sensor network. Big data and computing visions, 2(2), 101–106.
[13]      Erkut, E., Tjandra, S. A., & Verter, V. (2007). Hazardous materials transportation. Handbooks in operations research and management science, 14, 539–621.
[14]      Bianco, L., Caramia, M., Giordani, S., & Piccialli, V. (2013). International series in operations research and management science. Springer. Academic Journals.
[15]      Bula, G. A., Prodhon, C., Gonzalez, F. A., Afsar, H. M., & Velasco, N. (2017). Variable neighborhood search to solve the vehicle routing problem for hazardous materials transportation. Journal of hazardous materials, 324, 472–480. DOI:10.1016/j.jhazmat.2016.11.015
[16]      Bula, G. A., Murat Afsar, H., González, F. A., Prodhon, C., & Velasco, N. (2019). Bi-objective vehicle routing problem for hazardous materials transportation. Journal of cleaner production, 206, 976–986. DOI:10.1016/j.jclepro.2018.09.228
[17]      Du, J., Li, X., Yu, L., Dan, R., & Zhou, J. (2017). Multi-depot vehicle routing problem for hazardous materials transportation: A fuzzy bilevel programming. Information sciences, 399, 201–218.
[18]      Men, J., Jiang, P., & Xu, H. (2019). A chance constrained programming approach for HAZMAT capacitated vehicle routing problem in Type-2 fuzzy environment. Journal of cleaner production, 237, 117754. DOI:10.1016/j.jclepro.2019.117754
[19]      Zhou, Z., Ha, M., Hu, H., & Ma, H. (2021). Half open multi-depot heterogeneous vehicle routing problem for hazardous materials transportation. Sustainability (switzerland), 13(3), 1–17. DOI:10.3390/su13031262
[20]      Fontaine, P., & Minner, S. (2018). Benders decomposition for the HAZMAT Transport Network Design Problem. European journal of operational research, 267(3), 996–1002. DOI:10.1016/j.ejor.2017.12.042
[21]      Zhang, L., Feng, X., Chen, D., Zhu, N., & Liu, Y. (2019). Designing a hazardous materials transportation network by a bi-level programming based on toll policies. Physica a: statistical mechanics and its applications, 534, 122324. DOI:10.1016/j.physa.2019.122324
[22]      Fontaine, P., Crainic, T. G., Gendreau, M., & Minner, S. (2020). Population-based risk equilibration for the multimode HAZMAT transport network design problem. European journal of operational research, 284(1), 188–200. DOI:10.1016/j.ejor.2019.12.028
[23]      Mohabbati-Kalejahi, N., & Vinel, A. (2021). Robust hazardous materials closed-loop supply chain network design with emergency response teams location. Transportation research record, 2675(6), 306–329. DOI:10.1177/0361198121992071
[24]      Ziaei, Z., & Jabbarzadeh, A. (2021). A multi-objective robust optimization approach for green location-routing planning of multi-modal transportation systems under uncertainty. Journal of cleaner production, 291, 125293. DOI:10.1016/j.jclepro.2020.125293
[25]      Tasouji Hassanpour, S., Ke, G. Y., & Tulett, D. M. (2021). A time-dependent location-routing problem of hazardous material transportation with edge unavailability and time window. Journal of cleaner production, 322, 128951. DOI:10.1016/j.jclepro.2021.128951
[26]   Bolhasani, P., Fallah, M., Tavakkoli-Moghaddam, R., & Alam Tabriz, A. (2021). Presenting a multi-objective mathematical model of a location-routing-inventory problem for hazardous materials considering the concept elastic demand and queuing system. Journal of decisions and operations research, 6(2), 210–241. (In Persian).
[27]   Rahbari, M., Arshadi Khamseh, A., Sadati-Keneti, Y., & Jafari, M. J. (2022). A risk-based green location-inventory-routing problem for hazardous materials: NSGA II, MOSA, and multi-objective black widow optimization. Environment, development and sustainability, 24(2), 2804–2840. DOI:10.1007/s10668-021-01555-1
[28]   Fang, J. (2022). Smart phone based monitoring of agricultural activities. Computational algorithms and numerical dimensions, 1(4), 159–163.
[29]   Salamatbakhsh, A., Tavakkoli-Moghaddam, R., & Pahlevani, A. (2021). Solving a vehicle routing problem under uncertainty by a differential evolution algorithm. Inovation management and operational strategies, 1(4), 310–319. (In Persian).
[30]   Chen, Z. L. (2010). Integrated production and outbound distribution scheduling: Review and extensions. Operations research, 58(1), 130–148. DOI:10.1287/opre.1080.0688
[31]   Low, C., Chang, C. M., Li, R. K., & Huang, C. L. (2014). Coordination of production scheduling and delivery problems with heterogeneous fleet. International journal of production economics, 153, 139–148. DOI:10.1016/j.ijpe.2014.02.014
[32]   Li, Y., Chu, F., Chu, C., & Zhu, Z. (2019). An efficient three-level heuristic for the large-scaled multi-product production routing problem with outsourcing. European journal of operational research, 272(3), 914–927. DOI:10.1016/j.ejor.2018.07.018
[33]   Hemmati Golsefidi, A., & Akbari Jokar, M. R. (2020). A robust optimization approach for the production-inventory-routing problem with simultaneous pickup and delivery. Computers and industrial engineering, 143, 106388. DOI:10.1016/j.cie.2020.106388
[34]   Emamian, Y., Kamalabadi, I. N., & Eydi, A. (2021). Developing and solving an integrated model for production routing in sustainable closed-loop supply chain. Journal of cleaner production, 302, 126997. DOI:10.1016/j.jclepro.2021.126997
[35]   Schenekemberg, C. M., Scarpin, C. T., Pecora Jr, J. E., Guimarães, T. A., & Coelho, L. C. (2021). The two-echelon production-routing problem. European journal of operational research, 288(2), 436–449.
[36]   Chen, H. K., Hsueh, C. F., & Chang, M. S. (2009). Production scheduling and vehicle routing with time windows for perishable food products. Computers and operations research, 36(7), 2311–2319. DOI:10.1016/j.cor.2008.09.010
[37]   Amorim, P., Belo-Filho, M. A. F., Toledo, F. M. B., Almeder, C., & Almada-Lobo, B. (2013). Lot sizing versus batching in the production and distribution planning of perishable goods. International journal of production economics, 146(1), 208–218. DOI:10.1016/j.ijpe.2013.07.001
[38]   Lei, L., Liu, S., Ruszczynski, A., & Park, S. (2006). On the integrated production, inventory, and distribution routing problem. IIE transactions (institute of industrial engineers), 38(11), 955–970. DOI:10.1080/07408170600862688
[39]   Ganji, M., Kazemipoor, H., Hadji Molana, S. M., & Sajadi, S. M. (2020). A green multi-objective integrated scheduling of production and distribution with heterogeneous fleet vehicle routing and time windows. Journal of cleaner production, 259, 120824. DOI:10.1016/j.jclepro.2020.120824
[40]   Li, Y., Chu, F., Côté, J. F., Coelho, L. C., & Chu, C. (2020). The multi-plant perishable food production routing with packaging consideration. International journal of production economics, 221, 107472. DOI:10.1016/j.ijpe.2019.08.007
[41]   Bula, G. A., Gonzalez, F. A., Prodhon, C., Afsar, H. M., & Velasco, N. M. (2016). Mixed integer linear programming model for vehicle routing problem for hazardous materials transportation. IFAC-papersonline, 49(12), 538–543. DOI:10.1016/j.ifacol.2016.07.691
[42]   Padberg, M. (2000). Approximating separable nonlinear functions via mixed zero-one programs. Operations research letters, 27(1), 1–5. DOI:10.1016/s0167-6377(00)00028-6
[43]   Absi, N., Archetti, C., Dauzère-Pérès, S., Feillet, D., & Speranza, M. G. (2018). Comparing sequential and integrated approaches for the production routing problem. European journal of operational research, 269(2), 633–646. DOI:10.1016/j.ejor.2018.01.052
[44]   Kazantzi, V., Kazantzis, N., & Gerogiannis, V. C. (2011). Risk informed optimization of a hazardous material multi-periodic transportation model. Journal of loss prevention in the process industries, 24(6), 767–773. DOI:10.1016/j.jlp.2011.05.006
[45]   Ronza, A., Vílchez, J. A., & Casal, J. (2007). Using transportation accident databases to investigate ignition and explosion probabilities of flammable spills. Journal of hazardous materials, 146(1–2), 106–123. DOI:10.1016/j.jhazmat.2006.11.057
[46]   Reilly, A., Nozick, L., Xu, N., & Jones, D. (2012). Game theory-based identification of facility use restrictions for the movement of hazardous materials under terrorist threat. Transportation research part e: logistics and transportation review, 48(1), 115–131. DOI:10.1016/j.tre.2011.06.002