Document Type : Original Article

Authors

Department of Mathematics, Payame Noor University, Tehran, Iran.

Abstract

The Pareto set of optimal solutions resulting from solving multi-objective optimization problems, although on the one hand increases the flexibility in choosing an optimal solution according to the conditions of a system, but on the other hand, due to different tastes and perspectives in a The system, choosing the most desirable Pareto front answer, can be a serious challenge. In this regard, in this article, in the first step, by defining the concept of Gaussian degree of proximity and presenting a decomposition approach based on it, we produce the Pareto front, which numerical results show that this front in comparison with fronts obtained from other quality decomposition approaches. Has a higher. In the second step, due to the lack of an evaluation criterion that examines the quality of a front from different angles, we present a new evaluation criterion for comparing different fronts, which by considering both factors of mastery and proximity to the optimal answer. Examines the quality of the answers on a Pareto front. The results obtained from the simulation of the proposed steps on the existing standard test functions confirm the efficiency and effectiveness of each of the steps of the proposed problem.

Keywords

Bradford, E., Schweidtmann, A. M., & Lapkin, A. (2018). Efficient multiobjective optimization employing Gaussian processes, spectral sampling and a genetic algorithm. Journal of global optimization, 71(2), 407-438. https://doi.org/10.1007/s10898-018-0609-2
Chen, L., Xin, B. & Chen, J. (2021).  Interactive multiobjective evolutionary algorithm based on decomposition and compression. Science China information sciences, 64, 201-202. https://doi.org/10.1007/s11432-020-3092-y
Das, I., & Dennis, J. E. (1998). Normal-bounday intersection: A new method for generating Pareto optimal points in multicriteria optimization problems. SIAM journal on optimization, 8(3), 631-657. DOI: 10.1137/S1052623496307510
Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II.  IEEE transactions on evolutionary computation, 6(2), 182-197. DOI: 10.1109/4235.996017
Farina, M., & Amato, P. (2004). A fuzzy definition of optimality for many-criteria optimization problems. IEEE transactions on systems, man, and cybernetics - part A: systems and humans, 34(3), 315-326. DOI: 10.1109/TSMCA.2004.824873
Gong, M., Liu, F., Zhang, W., Jiao, L., & Zhang, Q. (2011). Interactive MOEA/D for multi-objective decision making. Proceedings of the 13th annual conference on genetic and evolutionary computation (pp. 721-728). https://doi.org/10.1145/2001576.2001675
He, Z., Yen, G. G., & Zhang, J. (2013). Fuzzy-based Pareto optimality for many-objective evolutionary algorithms. IEEE transactions on evolutionary computation, 18(2), 269-285. DOI: 10.1109/TEVC.2013.2258025
Jena, S. (2013). Multi-objective optimization of the design parameters of shell and tube type heat exchanger based on economic and size consideration (Ph.D Thesis, Bachelor of Technology). Retrieved from http://ethesis.nitrkl.ac.in/5390/
Khan, W., & Zhang, Q. (2010). MOEA/D-DRA with two crossover operators. 2010 UK workshop on computational intelligence (UKCI) (pp. 1-6). IEEE. DOI: 10.1109/UKCI.2010.5625578
Leung, M. F., & Ng, S. C.  (2020). A hybrid algorithm based on MOEA/D and local search for multiobjective optimization. 2020 IEEE congress on evolutionary computation (CEC) (pp. 1-8). IEEE. Glasgow, UK Doi: 10.1109/CEC48606.2020.9185741.
Li, H., & Zhang, Q. (2008). Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE transactions on evolutionary computation, 13(2), 284-302. DOI: 10.1109/TEVC.2008.925798
Lin, W., Lin, Q., Zhu, Z., Li, J., Chen, J., & Ming, Z. (2019). Evolutionary search with multiple utopian reference points in decomposition-based multiobjective optimization. Complexity, 2019. https://doi.org/10.1155/2019/7436712
Lu, H., & Yen, G. G. (2003). Rank-density-based multiobjective genetic algorithm and benchmark test function study. IEEE transactions on evolutionary computation, 7(4), 325–343. DOI: 10.1109/TEVC.2003.812220
Mashwani, W. K. (2011). Integration of NSGA-II and MOEA/D in multimethod search approach: algorithms. Proceedings of the 13th annual conference companion on Genetic and evolutionary computation (pp. 75-76). https://doi.org/10.1145/2001858.2001903
Messac, A., Ismail-Yahaya, A., & Mattson, C.A. (2003). The normalized normal constraint method for generating the Pareto frontier. Structural and multidisciplinary optimization25(2), 86-98. https://doi.org/10.1007/s00158-002-0276-1
Miettinen, K. (2001). Some methods for nonlinear multi-objective optimization. International conference on evolutionary multi-criterion optimization (pp. 1-20). Springer, Berlin, Heidelberg. https://doi.org/10.1