نوع مقاله : مقاله پژوهشی

نویسنده

شرکت مجتمع فولاد خراسان، نیشابور، خراسان رضوی، ایران.

10.22105/dmor.2022.361244.1663

چکیده

هدف: به‌طورکلی کارایی، معیار ارزیابی عملکرد یک واحد تصمیم‌گیری از ابعاد مختلف است. تحلیل پوششی داده‌ها، یک روش برنامه‌ریزی ریاضی، برای ارزیابی کارایی واحدهای تصمیم‌گیرنده است. هدف از پژوهش حاضر این است که با در‌نظر گرفتن هم‌زمان دارایی‌های ورودی و تامین سرمایه، کارایی مالی شرکت‌ها اندازه‌گیری شود.
روش‌شناسی پژوهش: در این پژوهش روش جدیدی به نام مدل سه‌بعدی تحلیل پوششی داده معرفی و در مورد 10 شرکت فعال در حوزه صنعت فولاد در ایران طی دوره زمانی 5 ساله و از سال‌های 1395 تا 1399 تحلیل کارایی انجام شد.
یافته‌ها: نتایج پژوهش نشان داد که شرکت‌های متعددی وجود دارند که عملکرد مناسبی در مدیریت دارایی‌های ورودی دارند، اما از نظر تامین سرمایه ناکارا هستند. درعین‌حال، شرکت‌هایی وجود دارند که در آن‌ها عملکرد مدیریت در مقایسه با دارایی‌های ورودی ضعیف است ولی از نظر تامین سرمایه کارا هستند؛ بنابراین، هنگام تحلیل کارایی شرکت، به شاخصی برای اندازه‌گیری کارایی نیاز است که هم ورودی‌ها و هم تامین سرمایه را هم‌زمان مدنظر قرار دهد. این پژوهش با تکیه بر‌این نکته یک روش اندازه‌گیری جدیدی را ارایه کرده است و وضعیت جاری مالی هر واحد تصمیم‌گیری را از طریق روش بازده به مقیاس تجزیه‌و‌تحلیل کرده و مسیری برای بهبود مالی مشخص نموده است.
اصالت/ارزش افزوده علمی: وجه تمایز این پژوهش با سایر پژوهش‌های پیشین توجه به تاثیر عوامل منفی و مخرب همانند استقراض‌ها و بدهی‌های واحد تصمیم‌گیری در تحلیل پوششی داده بوده است. با‌توجه به پیشینه پژوهش ارایه‌شده و جستجو در پایگاه‌های اطلاعاتی نظیر ایرانداک، مساله کارایی مالی با استفاده از مدل بازطراحی شده DEA، مورد‌توجه پژوهشگران ایرانی قرار نگرفته است و هم‌چنین ازآنجاکه این پژوهش به رویکرد جدیدی در تحلیل پوششی داده‌ها پرداخته است، خود را از پژوهش‌های پیشین متمایز ساخته است.

کلیدواژه‌ها

عنوان مقاله [English]

Investigating financial efficiency in steel industry companies: evidence from three-dimensional DEA approach

نویسنده [English]

  • Kasra Ghafori

Khorasan Steel Complex Company, Neishabur, Khorasan Razavi, Iran.

چکیده [English]

Purpose: In general, efficiency is a criterion for evaluating the performance of a decision unit from different dimensions. Data envelopment analysis is a mathematical programming method for evaluating the performance of decision-making units. The purpose of this study is to measure the financial efficiency of firms by considering both incoming assets and financing.
Methodology: In this research, a new method called the three-dimensional model of data envelopment analysis was introduced, and performance analysis was done on 10 active firms in Iran's steel industry for 5 years, from 2016 to 2021.
Findings: The results showed that several firms have good performance in managing incoming assets but are inefficient in terms of financing. At the same time, some firms have poor management performance compared to inputs, but they are efficient in terms of financing. Therefore, when analyzing a firm's performance, an indicator that considers both inputs and financing at the same time is needed. According to this, we proposed a new measurement method and analyzed the current financial situation of each decision-making unit through the method of return to scale, and a path has been determined for financial improvement.
Originality/Value: Attention to the effect of negative and destructive factors such as borrowings and debts of the decision-making unit in data envelopment analysis has been the key and different aspect of this study, compared to other previous studies. According to the literature review, using the redesigned DEA model has not been considered by Iranian researchers, and due to a new approach to data envelopment analysis, our approach has distinguished itself from the previous works.

کلیدواژه‌ها [English]

  • Data envelopment analysis
  • Steel industry
  • Financial efficiency
  • Three-dimensional DEA
[1]     Shafiee, M. (2017). Designing a multi-level data coverage model in evaluating the efficiency of financial institutions. Operations research in its applications, 14(2), 41–66. http://jamlu.liau.ac.ir/article-1-1514-fa.html
[2]     Moazzami Godarzi, M. R., Jabransari, M. R., Moalem, A., & Shakiba, M. (2014). The application of data envelopment analysis (DEA) in evaluating the relative efficiency and ranking of Refah Bank branches in Lorestan province and comparing its results with the TOPSIS method. Economic research (sustainable growth and development), 14(1), 115–126. (In Persian). http://dorl.net/dor/20.1001.1.17356768.1393.14.1.5.4
[3]     Yousefi Zenouz, R. S. (2017). Evaluating the financial efficiency of pharmaceutical companies accepted in tehran stock exchange through using integrated model of data envelopment analysis (DEA) and balanced scorecard (BSC). Decision engineering quarterly, 2(5), 33–65. (In Persian). http://dx.doi.org/10.52547/jde.2.5.33
[4]     Jahanshahloo, G. R., Soleimani-Damaneh, M., & Ghobadi, S. (2015). Inverse DEA under inter-temporal dependence using multiple-objective programming. European journal of operational research, 240(2), 447–456.
[5]     Cielen, A., Peeters, L., & Vanhoof, K. (2004). Bankruptcy prediction using a data envelopment analysis. European journal of operational research, 154(2), 526–532.
[6]     Sueyoshi, T. (2004). Mixed integer programming approach of extended DEA--discriminant analysis. European journal of operational research, 152(1), 45–55.
[7]     Färe, R., Grosskopf, S., Noh, D. W., & Weber, W. (2005). Characteristics of a polluting technology: theory and practice. Journal of econometrics, 126(2), 469–492.
[8]     Färe, R., Grosskopf, S., & Weber, W. L. (2006). Shadow prices and pollution costs in US agriculture. Ecological economics, 56(1), 89–103.
[9]     Niu, D., Song, Z., Xiao, X., & Wang, Y. (2018). Analysis of wind turbine micrositing efficiency: An application of two-subprocess data envelopment analysis method. Journal of cleaner production, 170, 193–204.
[10] Tran, T. H., Mao, Y., Nathanail, P., Siebers, P. O., & Robinson, D. (2019). Integrating slacks-based measure of efficiency and super-efficiency in data envelopment analysis. Omega, 85, 156–165.
[11] Syarifa, L. F., Shamsudin, M. N., Radam, A., Latif, I. A., & Haris, U. (2019). Non-parametric approach towards Smallholders rubber production efficiency: a two-stage data envelopment analysis (DEA). Journal of asian scientific research, 9(2), 10. doi:10.18488/journal.2.2019.92.10.19
[12] Avkiran, N. K., Shafiee, M., Saleh, H., & Ghaderi, M. (2018). Benchmarking in the supply chain using data envelopment analysis. Theoretical economics letters, 8(14), 2987. https://www.scirp.org/html/9-1501623_87947.htm
[13] Lee, J., & Choi, G. (2019). A dominance-based network method for ranking efficient decision-making units in data envelopment analysis. Sustainability, 11(7), 2059. https://doi.org/10.3390/su11072059
[14] Boudaghi, E., & Saen, R. F. (2018). Developing a novel model of data envelopment analysis--discriminant analysis for predicting group membership of suppliers in sustainable supply chain. Computers & operations research, 89, 348–359.
[15] Prasad, S. V. S. R. (2019). Measuring the efficiency of indian real estate firms during the pre-and post-demonetization period by adopting data envelopment analysis. Baltic journal of real estate economics and construction management, 7(1), 98–109.
[16] Yahia, F. Ben, & Essid, H. (2019). Determinants of Tunisian Schools’ efficiency: a DEA-Tobit approach. Journal of applied management and investments, 8(1), 44–56.