نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه تکنولوژی آموزشی، دانشکده روانشناسی و علوم تربیتی، دانشگاه علامه طباطبایی، تهران، ایران.

2 گروه مهندسی کامپیوتر، دانشکده مهندسی کامپیوتر، دانشگاه علم و صنعت ایران، تهران، ایران.

10.22105/dmor.2022.328065.1563

چکیده

هدف: مساله تخصیص فضای فیزیکی به نیازهای دانشگاهی یکی از مسایل بهینه‌­سازی پیچیده است که مجموعه‌ای از نیازهای آموزشی و پژوهشی محدود را به مجموعه‌ای از منابع با رعایت مجموعه‌ای از محدودیت‌ها، توزیع می‌کند. با توجه به پیچیدگی این مساله، تکنیک‌های متعددی مبتنی بر روش‌های ابتکاری پیشنهاد شده است. در این مقاله، یک مدل ریاضی از نوع برنامه‌­ریزی اعداد صحیح برای فرموله کردن این مساله ارایه می‌شود.
روش‌شناسی پژوهش: برای حل مدل از روش گرادیان کاهشی استفاده می‌شود و پارامترهای آن تنظیم می‌گردند. برای ارزیابی مدل و راه­‌حل پیشنهادی، داده‌ها و امکانات یکی از دانشکده‌های نوپا در دانشگاه علامه طباطبایی در تهران، مورد آزمایش قرار می‌گیرد. تعداد 11 نیازمندی و 18 فضای فیزیکی قابل تخصیص در این دانشکده تعریف شده است، بنابراین تعداد 198 متغیر تصمیم‌گیری با دامنه ارزش‌های صفر و یک، در مدل وجود دارد. در ارزیابی، چندین سناریو ایجاد می‌­شود و نتایج هر یک از سناریوها مورد مقایسه قرار می­‌گیرد.
یافته‌ها: مدل و راه‌­حل ارایه شده، یک روش عمومی است و می‌تواند برای سایر دانشکده‌ها و دانشگاه‌هایی که با محدویت فضا مواجه می‌باشند، مورد استفاده قرار گیرد.
اصالت/ارزش افزوده علمی: در این مقاله، یک مدل ریاضی برای فرموله کردن مساله تخصیص فضای فیزیکی که یکی از مسایل مهم تصمیم‌­گیری برای سازمان‌ها و موسسه‌های آموزشی­ و پژوهشی است ارایه شد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

A mathematical optimization model for allocating physical spaces to academic requirements

نویسندگان [English]

  • Zeynab Rashidi 1
  • Zahra Rashidi 2

1 Department of Instructional Technology, Faculty of Psychology and Education, Allameh Tabataba'i University, Tehran, Iran.

2 Department of Computer Engineering, School of Computer Engineering, Iran University of Science and Technology, Tehran, Iran.

چکیده [English]

Purpose: The problem of allocating space to academic needs is one of the complex optimization issues that distributes a limited set of educational and research needs to a set of resources with a set of constraints. Due to the complexity of this problem, several techniques based on innovative methods have been proposed. In this paper, a mathematical model of integer programming is presented to formulate this problem.
Methodology: To solve the model, the gradient descent method is used and its parameters are adjusted. To evaluate the proposed model and solution, the data and facilities of one of the fledgling faculties at Allameh Tabatabai University in Tehran are tested. There are 11 requirements and 18 allocable spaces in this faculty and therefore there are 198 binary decision variables, in the model. In experiments, several scenarios are created and the results of each scenario are compared.
Findings: The proposed model and solution is a general method and can be used for other faculties and universities that face space constraints.
Originality/Value: In this article, a mathematical model was presented to formulate the problem of allocating space, which is one of the important decision-making issues for organizations and research educational institutions.

کلیدواژه‌ها [English]

  • Educational space needs
  • Mathematical optimization
  • Research space needs
  • Space
[1]     McCollum, B. (2006). A perspective on bridging the gap between theory and practice in university timetabling. International conference on the practice and theory of automated timetabling (pp. 3–23). Springer.
[2]     Ritzman, L., Bradford, J., & Jacobs, R. (1979). A multiple objective approach to space planning for academic facilities. Management science, 25(9), 895–906. DOI:10.1287/mnsc.25.9.895
[3]     Benjamin, C. O., Ehie, I. C., & Omurtag, Y. (1992). Planning facilities at the university of missouri-rolla. Interfaces, 22(4), 95–105. DOI:10.1287/inte.22.4.95
[4]     Ülker, Ö., & Landa-Silva, D. (2010). A 0/1 integer programming model for the office space allocation problem. Electronic notes in discrete mathematics, 36(C), 575–582. DOI:10.1016/j.endm.2010.05.073
[5]     Burke, E. K., Cowling, P., Landa Silva, J. D., & McCollum, B. (2001). Three methods to automate the space allocation process in UK universities. Practice and theory of automated timetabling III: third international conference, PATAT 2000 Konstanz, Germany, August 16–18, 2000 Selected Papers 3 (pp. 254-273). Springer Berlin Heidelberg. DOI: 10.1007/3-540-44629-x_16
[6]     Lopes, R., & Girimonte, D. (2010). The office-space-allocation problem in strongly hierarchized organizations. European conference on evolutionary computation in combinatorial optimization (pp. 143–153). Springer.
[7]     Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598), 671–680. DOI:10.1126/science.220.4598.671
[8]     Ülker, Ö., & Landa-Silva, D. (2012). Evolutionary local search for solving the office space allocation problem. 2012 IEEE congress on evolutionary computation, CEC 2012 (pp. 1–8). IEEE.
[9]     Awadallah, M. A., Khader, A. T., Al-Betar, M. A., & Woon, P. C. (2012). Office-space-allocation problem using harmony search algorithm. Neural information processing: 19th international conference, ICONIP 2012, Doha, Qatar, November 12-15, 2012, proceedings, part II 19 (pp. 365–374). Springer.
[10]   Burke, E. K., Silva, J. D. L., & Soubeiga, E. (2005). Multi-objective hyper-heuristic approaches for space allocation and timetabling. Metaheuristics: progress as real problem solvers, 129–158. https://link.springer.com/chapter/10.1007/0-387-25383-1_6
[11]   Burke, E. K., Cowling, P., & Silva, J. L. (2001). Hybrid population-based metaheuristic approaches for the space allocation problem. Proceedings of the 2001 congress on evolutionary computation (IEEE Cat. No. 01TH8546) (Vol. 1, pp. 232-239). IEEE.
[12]   Burke, E. K., Cowling, P., Landa Silva, J. D., & Petrovic, S. (2001). Combining hybrid metaheuristics and populations for the multiobjective optimisation of space allocation problems. Proceedings of the 2001 genetic and evolutionary computation conference (GECCO 2001) (pp. 1252-1259). https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=039848a7e16c3a378b
34c15f6fa02f380fe6e0f0
[13]   Landa-Silva, D., & Burke, D. K. (2007). Asynchronous cooperative local search for the office-space-allocation problem. INFORMS journal on computing, 19(4), 575–587. DOI:10.1287/ijoc.1060.0200
[14]   Bashirzadeh, M., Daneshvar, S., & Azarmir, N. (2014). Determining the inefficient space and ranking of DMUs with undesirable outputs. Journal of applied research on industrial engineering, 1(1), 1–11.
[15]   Bolaji, A. L., Khader, A. T., Al-Betar, M. A., & Awadallah, M. A. (2014). University course timetabling using hybridized artificial bee colony with hill climbing optimizer. Journal of computational science, 5(5), 809–818.
[16]   Bolaji, A. L. A., Khader, A. T., Al-Betar, M. A., & Awadallah, M. A. (2015). A hybrid nature-inspired artificial bee colony algorithm for uncapacitated examination timetabling problems. Journal of intelligent systems, 24(1), 37–54. DOI:10.1515/jisys-2014-0002
[17]   Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization. http://mf.erciyes.edu.tr/abc/pub/tr06_2005.pdf
[18]   Bolaji, A. L., Khader, A. T., Al-Betar, M. A., & Awadallah, M. A. (2013). Artificial bee colony algorithm, its variants and applications: a survey. Journal of theoretical and applied information technology, 47(2), 434–459.
[19]   Karaboga, D., Gorkemli, B., Ozturk, C., & Karaboga, N. (2014). A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artificial intelligence review, 42(1), 21–57. DOI:10.1007/s10462-012-9328-0
[20]   Bolaji, A. L., Khader, A. T., Al-Betar, M. A., & Awadallah, M. A. (2012). Artificial bee colony algorithm for solving educational timetabling problems. International journal of natural computing research, 3(2), 1–21.
[21]   Azeeta, A., Misra, S., Odusami, M., Peter, O. U., & Ahuja, R. (2021). An intelligent student hostel allocatıon system based on web applications. Recent innovations in computing: proceedings of ICRIC 2020 (pp. 779–791). Springer.
[22]   Bolaji, A. L., Michael, I., & Shola, P. B. (2017). Optimization of office-space allocation problem using artificial bee colony algorithm. Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics) (Vol. 10385 LNCS, pp. 337–346). Springer International Publishing.
[23]   Ishichi, K., Ohmori, S., Ueda, M., & Yoshimoto, K. (2019). Shelf-space allocation model with demand learning. Operations and supply chain management, 12(1), 24–30. DOI:10.31387/oscm0360219
[24]   Bolaji, A. L. aro, Bamigbola, A. F., & Shola, P. B. (2018). Late acceptance hill climbing algorithm for solving patient admission scheduling problem. Knowledge-based systems, 145, 197–206.
[25]   Mtonga, K., Twahirwa, E., Kumaran, S., & Jayavel, K. (2021). Modelling classroom space allocation at university of Rwanda-a linear programming approach. Applications and applied mathematics: an international journal (AAM), 16(1), 40. https://digitalcommons.pvamu.edu/aam/vol16/iss1/40/
[26]   Hasan Zadeh, R., & Alizade, S. (2019). Multi-location logistics in relief with regard to urban infrastructure. Journal of decisions and operations research, 4(3), 232–245. (In Persian). https://www.journal-dmor.ir/article_96789_en.html?lang=fa
[27]   Rashidi, H. (2020). A Mathematical optimization model for allocating student dormitories in corona-living conditions. Journal of decisions and operations research, 5(2), 188–203. (In Persian). https://www.journal-dmor.ir/article_120042.html?lang=en
[28]   Lotfi, R., Pilehforooshha, P., & Karimi, M. (2023). A multi-objective optimization model for school location-allocation coupling demographic changes. Journal of spatial science, 68(2), 225–244.
[29]   Kakkar, M. K., Singla, J., Garg, N., Gupta, G., Srivastava, P., & Kumar, A. (2021). Class schedule generation using evolutionary algorithms. Journal of physics: conference series (Vol. 1950, No. 1, p. 012067). IOP Publishing. DOI: 10.1088/1742-6596/1950/1/012067
[30]   Raja Murugadoss, J., & Krishna Kishore, K. (2020). Effectiveness of E-learning in rural India and significance of self-directed learning. International journal of advanced science and technology, 29(6), 6015–6020.
[31]   Razmjooei, V., Mahdavi, I., & Gutmen, S. (2022). A hybrid multi-objective algorithm to solve a cellular manufacturing scheduling problem with human resource allocation. Journal of applied research on industrial engineering, 9(2), 272–287.
[32]   Schreck, J., Baretton, G., & Schirmacher, P. (2020). Situation of the German university pathologies under the constraints of the corona pandemic—evaluation of a first representative survey. Pathologe, 41(4), 400–405.
[33]   Rudd, K., Foderaro, G., Zhu, P., & Ferrari, S. (2017). A generalized reduced gradient method for the optimal control of very-large-scale robotic systems. IEEE transactions on robotics, 33(5), 1226–1232.