نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی صنایع، دانشگاه پیام نور، تهران، ایران.

10.22105/dmor.2022.327117.1560

چکیده

هدف: چالش اصلی در حوادث بحرانی مانند زلزله کرمانشاه مکان‌یابی بهینه مراکز توزیع اقلام بشردوستانه است که بر تخصیص بسته‌های امدادی به مراکز تقاضا نقش موثری ایفا می‌کند. از این‌رو ایجاد تعادل بین پیچیدگی مساله عدم قطعیت با محدودیت‌های زمان‌بندی ارسال کمک‌ها و میزان منابع امری حیاتی است. در این راستا یک مدل مکان‌یابی تخصیص با درنظر گرفتن پایایی مجموعه‌ هاب‌های توزیع توسعه یافته است که با اختلالات پیش‌رو بعد از وقوع بحران نیز مقابله می‌کند. مدل پیشنهادی منطقه آسیب‌دیده را به چندلایه تقسیم کرده و هم‌زمان به ظرفیت ناوگان امدادی توجه کرده و ترکیبی از برنامه‌ریزی فازی با محدودیت شانس و برنامه‌ریزی استوار را برای مقابله با عدم قطعیت پارامتری ارایه می‌نماید.
روش‌شناسی پژوهش: با ارزیابی دقیق مناطق حادثه‌خیز ایران، مدلی جامع از شبکه امدادی شامل هاب‌های توزیع استراتژیک و موقت همراه با طیف وسیعی از فاکتورها و پارامترهای موثر طراحی شد. سپس مدل‌سازی ریاضی با درنظر گرفتن پایایی هاب توزیع مساله بحران زلزله و امدادرسانی با توجه به توپوگرافی منطقه مورد‌مطالعه توسعه یافت. در ادامه روش محدودیت اپسیلون جهت پوشش مساله بهینه‌سازی چندهدفه و تعیین راه‌حل‌های بهینه پارتو اعمال گردید و ترکیب ریاضی برنامه‌ریزی امکانی-استوار جهت مواجه با عدم قطعیت به‌کار گرفته شد.
یافته‌ها: نتایج نشان می‌دهد که مدیریت توزیع امداد و توسعه سطوح استراتژیک و عملیاتی توزیع بر اساس طبقه‌بندی جغرافیایی منطقه آسیب‌دیده در شرایط بحرانی در کاهش هزینه‌های شبکه موثر است. سیاست پایایی به‌کار گرفته‌شده در مجموعه‌‌ هاب توزیع قابلیت اطمینان شبکه توزیع امدادی را ارتقا داده است و درنهایت، نتایج خروجی مطالعه موردی کاربرد و اثربخشی مدل شبکه امداد گسترده را نشان می‌دهد.
اصالت/ارزش‌افزوده علمی: پژوهش حاضر، به‌عنوان یک سیستم پشتیبان تصمیم، امدادرسانی در مناطق کشور را در شرایط وقوع بحران تسهیل می‌نماید. پیش‌بینی مجموعه‌ هاب توزیع پایا با رویکرد حمل‌ونقل ترکیبی متناسب با توپوگرافی منطقه اجرای بهینه عملیات کمک‌رسانی را تضمین می‌کند. هم‌چنین مدل توسعه‌یافته با اندکی تغییرات در مناطق در معرض حادثه کشور قابلیت عملیاتی دارد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Provide a reliable location-allocation model in the humanitarian supply chain network using combined transport and the application of feasibility-robust planning

نویسندگان [English]

  • Alireza Hamidieh
  • Maryam Besharat Meymandi

Department of Industrial Engineering, Payame Noor University (PNU), Tehran, Iran.

چکیده [English]

Purpose: The main challenge in devastating events such as the Kermanshah earthquake is the optimal location of humanitarian distribution centers, which plays an effective role in allocating relief shipments to demand centers. Therefore, balancing the complexity of the issue and the uncertainty with the constraints on aid scheduling and resource management is critical. In this regard, the location-allocation model has been developed by considering the reliability of the distribution hub set, which provides the possibility of dealing with impending disruptions after the crisis. The proposed model divides the affected area into several layers and simultaneously considers the capacity of the relief fleet. Also, a combined approach of fuzzy programming with chance constraints and robust programming has been developed to deal with parametric uncertainty.
Methodology: With the thorough assessment of the disaster areas of Iran, a comprehensive model of the relief network was designed including strategic and temporary distribution hubs along with a wide range of factors and effective parameters. Subsequently, mathematical modeling was distributed by considering the reliability of the earthquake crisis distribution hub and relief according to the topography of the study area. Next, the Epsilon constraint method was applied to cover the multi-objective optimization problem and to determine non-dominant Pareto optimal solutions, and the mathematical combination of possibilistic-robust programming was used to deal with uncertainty.
Findings: The results show that the management of relief distribution and the development of strategic and operational levels of distribution based on the geographical classification of the affected area in critical conditions are effective in reducing network costs. The reliability policy used in the distribution hub set has improved the confidence capability of the humanitarian distribution network. Finally, the output results of the case study show the application and effectiveness of the extended relief network model.
Originality/Value: The present study, as a decision support system, facilitates relief in the regions of the country in the event of a crisis. Predicting a reliable distribution hub set with a combined transportation approach appropriate to the topography of the region ensures the optimal implementation of relief operations. Also, the developed model is operational in the areas at risk of the country.
 

کلیدواژه‌ها [English]

  • Humanitarian relief
  • Logistics
  • Network allocation
  • Robust-fuzzy planning
  • Temporary distribution centers
[1]    Bastian, N. D., Griffin, P. M., Spero, E., & Fulton, L. V. (2016). Multi-criteria logistics modeling for military humanitarian assistance and disaster relief aerial delivery operations. Optimization letters, 10, 921–953.
[2]   Baharmand, H., Comes, T., & Lauras, M. (2019). Bi-objective multi-layer location--allocation model for the immediate aftermath of sudden-onset disasters. Transportation research part E: logistics and transportation review, 127, 86–110.
[3]    Yu, W. (2020). Reachability guarantee based model for pre-positioning of emergency facilities under uncertain disaster damages. International journal of disaster risk reduction, 42, 101335. https://www.sciencedirect.com/science/article/pii/S2212420919305783
[4]     Boonmee, C., Arimura, M., & Asada, T. (2017). Facility location optimization model for emergency humanitarian logistics. International journal of disaster risk reduction, 24, 485–498.
[5]   Taghipour, Z., Tashemi, F., & Jabal Ameli, M. S. (2019). Presenting the humanitarian supply chain location-allocation model for the evacuation of crisis victims. The 12th international conference of the Iranian association for operations research. Babolsar, Iran. Civilica. (In Persian). https://civilica.com/doc/923491
[6]   Weiss Moradi, F., & Yazdani, M. H. (2020). An analysis of the most effective indicators of locating temporary housing in a case study of kermanshah city. The second conference of urban management, and urban planning and architecture with the approach of economics and urban development. Tabriz, Iran. Civilica. (In Persian). https://civilica.com/doc/1114984
[7]    Faraji Sabokbar, H. A., Mahdi, M., Aghataher, R., Taghizadeh Ghalejuqi, S., & Rahimi, S. (2016). Designing an emergency response system for managing the natural disasters (earthquakes) using telegeoinformatics. Scientific- research quarterly of geographical data, 25(97), 15-28. (In Persian). DOI: 10.22131/sepehr.2016.20133
[8]  Rawls, C. G., & Turnquist, M. A. (2010). Pre-positioning of emergency supplies for disaster response. Transportation research part B: methodological, 44(4), 521–534.
[9]    Murali, P., Ordóñez, F., & Dessouky, M. M. (2012). Facility location under demand uncertainty: response to a large-scale bio-terror attack. Socio-economic planning sciences, 46(1), 78–87.
[10] Döyen, A., Aras, N., & Barbarosouglu, G. (2012). A two-echelon stochastic facility location model for humanitarian relief logistics. Optimization letters, 6, 1123–1145.
[11]  Bozorgi Amiri, A., Jabalameli, M. S., & Mirzapour Al-Hashem, S. M. J. (2013). A multi-objective robust stochastic programming model for disaster relief logistics under uncertainty. OR spectrum, 35, 905–933.
[12]   Paul, J. A., & Hariharan, G. (2012). Location-allocation planning of stockpiles for effective disaster mitigation. Annals of operations research, 196, 469–490.
[13]  Saffari, D., Aghaie, A., & Roghanian, E. (2018). Multi-layer location-allocation model within queuing networks framework. Journal of industrial engineering research in production systems, 6(12), 49-61. (In Persian). DOI: 10.22084/ier.2018.13378.1606
[14]  Snyder, L. V, & Daskin, M. S. (2005). Reliability models for facility location: the expected failure cost case. Transportation science, 39(3), 400–416.
[15]  Albareda Sambola, M., Landete, M., Monge, J. F., & Sainz Pardo, J. L. (2017). Introducing capacities in the location of unreliable facilities. European journal of operational research, 259(1), 175–188.
[16] Cui, T., Ouyang, Y., & Shen, Z.-J. M. (2010). Reliable facility location design under the risk of disruptions. Operations research, 58(4-part-1), 998–1011.
[17]  Fazli Khalaf, M., Chaharsooghi, S. K., & Pishvaee, M. S. (2015). A reliable closed-loop supply chain network design under uncertainty: A case study of a lead-acid battery manufacturer. Journal of modeling in engineering, 12(39), 45-60. (In Persian). https://modelling.semnan.ac.ir/article_1690.html
[18]  Li, X., Ouyang, Y., & Peng, F. (2013). A supporting station model for reliable infrastructure location design under interdependent disruptions. Procedia-social and behavioral sciences, 80, 25-40.
[19]  Lu, C. C., & Sheu, J. B. (2013). Robust vertex p-center model for locating urgent relief distribution centers. Computers & operations research, 40(8), 2128–2137.
[20]  Xie, S., Li, X., & Ouyang, Y. (2015). Decomposition of general facility disruption correlations via augmentation of virtual supporting stations. Transportation research part b: methodological, 80, 64–81.
[21]  Xie, S., An, K., & Ouyang, Y. (2019). Planning facility location under generally correlated facility disruptions: Use of supporting stations and quasi-probabilities. Transportation research part B: methodological, 122, 115–139.
[22]  Yahyaei, M., & Bozorgi Amiri, A. (2019). Robust reliable humanitarian relief network design: an integration of shelter and supply facility location. Annals of operations research, 283(1–2), 897–916.
[23]  Ahmadi, M., Seifi, A., & Tootooni, B. (2015). A humanitarian logistics model for disaster relief operation considering network failure and standard relief time: A case study on San Francisco district. Transportation research part E: logistics and transportation review, 75, 145–163.
[24]   Salman, F. S., & Yücel, E. (2015). Emergency facility location under random network damage: Insights from the Istanbul case. Computers & operations research, 62, 266–281.
[25]   Hassin, R., Ravi, R., & Salman, F. S. (2017). Multiple facility location on a network with linear reliability order of edges. Journal of combinatorial optimization, 34, 931–955.
[26]  Ghomi, M., Jalalinaeeni, S. G., Tavakoli Moghadam, R., & Jabbarzadeh, A. (2016). Closed loop supply chain network design under disturbance and uncertainty conditions considering quality and resilience strategy. Journal of quality engineering and management, 6(2), 133-145. (In Persian). https://www.pqprc.ir/article_55873.html
[27]   Ortuño, M. T., Cristóbal, P., Ferrer, J. M., Martin-Campo, F. J., Muñoz, S., Tirado, G., & Vitoriano, B. (2013). Decision aid models and systems for humanitarian logistics. A survey. In Decision aid models for disaster management and emergencies (pp. 17–44). Springer. https://doi.org/10.2991/978-94-91216-74-9_2
[28]   Salmerón, J., & Apte, A. (2010). Stochastic optimization for natural disaster asset prepositioning. Production and operations management, 19(5), 561–574.
[29]    Park, S. (2007). A multi-objective decision-making model for resources allocation in humanitarian relief  (Master Thesis, Air University of Korea). https://scholar.afit.edu/cgi/viewcontent.cgi?article=4089&context=etd
[30]    Hamidieh, A., Arshadi Khamseh, A., & Naderi, B. (2018). A new combination of robust-possibilistic mathematical programming for resilient supply chain network under disruptions and uncertainty: a real supply chain (research note). International journal of engineering, 31(4), 612-621. (In Persian). https://www.sid.ir/paper/515677/fa
[31]    Kalantari,  M., & Pishvaee, M. S. (2016). A robust possibilistic programming approach to drug supply chain master planning. Journal of industrial engineering research in production systems, 4(7), 49-67. (In Persian). DOI: 10.22084/ier.2016.1568
[32]    Farrokh, M., Azar, A., & Jandaghi, G. (2016). A novel robust fuzzy programming approach for closed loop supply chain design. Modern research in decision making, 1(3), 131-160. (In Persian). https://journal.saim.ir/article_22024.html?lang=en
[33]   Ghesmati, R., Ghazanfari, M., & Pishvaee, M. S. (2015). A robust fuzzy-probabilistic programming model for a reliable supply chain network design problem. Advances in industrial engineering, 50(1), 53–68.
[34]  Abounacer, R., Rekik, M., & Renaud, J. (2014). An exact solution approach for multi-objective location--transportation problem for disaster response. Computers & operations research, 41, 83–93.
[35]   Fazli-Khalaf, M., Naderi, B., Mohammadi, M., & Pishvaee, M. S. (2020). Design of a sustainable and reliable hydrogen supply chain network under mixed uncertainties: A case study. International journal of hydrogen energy, 45(59), 34503–34531.
[36]  Günay, E. E., Kremer, G. E. O., & Zarindast, A. (2021). A multi-objective robust possibilistic programming approach to sustainable public transportation network design. Fuzzy sets and systems, 422, 106–129.
[37]   Farbod, E., & Hamidieh, A. (2022). Investigating the impact of green supply chain on economic performance: neural network models and structural equations approach. Journal of decisions & operations research, 7(2), 316-338. (In Persian). https://www.journal-dmor.ir/article_145038.html
[38]   Fattahi, P., Masoomi, M., & Behnamian, J. (2017). Presenting a hybrid algorithm for solving multi-commodity routing location problem considering transshipment systems in supply chain. Industrial management studies, 15(46), 97-134. (In Persian). https://doi.org/10.22054/jims.2017.7990
[39]   Ghasemi, P., Khalili Damghani, K., Hafezalkotob, A., & Raissi, S. (2018). Multi-objective mathematical model for location, allocation and distribution of relief commodities under uncertainty. Industrial management studies, 16(51), 107-144. (In Persian). https://doi.org/10.22054/jims.2018.23532.1805
[40]   Rooh al-Feda, S., & Hassanzadeh, R. (1397). Modeling and solving the multi-objective problem of allocation and location in relief and crisis logistics, taking into account the maximization of the coverage percentage of the injured. The second international conference on new research achievements in management sciences, accounting and industrial engineering. Sari, Iran. Civilica. (In Persian). https://civilica.com/doc/842190
[41]   Emami, I., Kamran Rad, R., & Jokar, E. (2019). Locating and assigning projects in the multi-level supply chain network using the simultaneous multi-objective method using the mopso algorithm (case study: EPC projects of substation construction in tep company). The 5th international conference on industrial and systems engineering (ICISE 2019). Mashhad, Iran. Civilica. (In Persian). https://civilica.com/doc/932465
[42]   Asefi, A. H, Bozorgi-Amiri, A., & Ghezavati, V. (2020). Location-routing problem in humanitarian relief chain considering the reliability of road network. Emergency management, 9(1), 29-41. (In Persian). https://www.joem.ir/article_45861.html