نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم ریاضی، دانشگاه مازندران، بابلسر، ایران.

2 گروه ریاضی کاربردی، دانشگاه مازندران، بابلسر، ایران.

3 گروه مهندسی صنایع، دانشگاه صنعتی نوشیروانی بابل، بابل، ایران.

10.22105/dmor.2022.309494.1499

چکیده

هدف: مساله حمل‌و‌نقل، به‌عنوان یکی از مهم‌ترین و کاربردی‏‌ترین مدل‌‏های مرتبط با برنامه‌‏ریزی خطی، همواره مورد‌توجه محققین می‌باشد. باتوجه به فقدان اطلاعات دقیق، شرایط اقتصادی متغیر، عوامل غیرقابل‌کنترل و به‌ویژه شرایط متغیر منابع در دسترس، برای تطبیق با شرایط واقعی عملا با نوعی از عدم قطعیت، هم انعطاف‌پذیری در قیود و هم‌فازی بودن ماهیت پارامترها مواجه هستیم. ازاین‌رو، یک روش برای بیان شرایط این مدل‌سازی، استفاده از اعداد فازی انعطاف‌پذیر است که باعث می‏‌شود با شرایط واقعی تطبیق بیش‌تری داشته باشد.
روش‌شناسی پژوهش: در این تحقیق، پس از بررسی ادبیات پژوهش، مساله حمل‌و‌نقل کلاسیک با در‌نظرگرفتن محدودیت عرضه فازی انعطاف‌پذیر-بازه‏ای، مدل‌سازی می‏‌شود. در ادامه برای فرآیند حل، یک رویکرد فازی انعطاف‌پذیر برای مدل پیشنهادی مورد‌مطالعه قرار می‌‏گیرد.
یافته‌ها: تجزیه‌و‌تحلیل مثال عددی بیانگر آن است که رویکرد برنامه‌ریزی خطی پارامتری طرحی مطمئن ارایه می‏‌دهد تا تصمیم‌گیرنده اجازه انتخاب بهتری از منابع با بیش‌ترین رضایتمندی به‌دست آورد.
اصالت/ارزش‌افزوده علمی: در این پژوهش، به رویکرد پارامتری با رابطه انعطاف‌پذیر پرداخته می‏‌شود و بر‌اساس نتایج پژوهش، جواب با بیش‌ترین رضایتمندی در قیود به‌دست می‌‏آید.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

A two-phase parametric approach for solving flexible fuzzy transportation problem

نویسندگان [English]

  • Gohar Shakouri 1
  • Seyed Hadi Nassery 2
  • Mohammad Mahdi Paydar 3

1 Department of Mathematics, University of Mazandaran, Babolsar, Iran.

2 Department of Applied Mathematics, Mazandaran University, Babolsar, Iran.

3 Department of Industrial Engineering, Babol Noshirvani University of Technology, Babol, Iran.

چکیده [English]

Purpose: The transportation problem, as one of the most important and most practical models related to linear programming, has always been of interest to researchers. Due to the lack of accurate information, variable economic conditions, uncontrollable factors and especially variable conditions of available resources, to adapt to the real conditions, we are faced with a kind of uncertainty, both flexibility in constraints and fuzzy nature of the parameters. Hence, one method to express the conditions of this modeling is to use flexible fuzzy numbers that make it more adaptable to real conditions.
Methodology: In this research, after reviewing the research literature, the transportation problem is modeled by considering the flexible-interval fuzzy supply constraint. Then, for the solution process, a flexible fuzzy approach to the proposed model is studied.
Findings: Numerical example analysis indicates that parametric linear programming approach offers a reliable design so that the decision maker can obtain a better selection of resources with the most satisfaction.
Originality/Value: In this research, parametric approach with flexible relationship is discussed and based on the research results, the solution is obtained with the most satisfaction in constraints.

کلیدواژه‌ها [English]

  • Flexible linear problem
  • Fuzzy transportation model
  • Parameter linear programming
  • Membership function
  • Flexible fuzzy constraint
[1]     Liu, S.-T., & Kao, C. (2004). Solving fuzzy transportation problems based on extension principle. European journal of operational research, 153(3), 661–674. DOI:https://doi.org/10.1016/S0377-2217(02)00731-2
[2]    Gani, A. N., & Razak, K. A. (2006). Two stage fuzzy transportation problem. Journal of physical sciences, 10, 63–69.
[3]    Pandian, P., & Natarajan, G. (2010). A new method for finding an optimal solution for transportation problems. International journal of mathematical sciences and engineering applications, 4(2), 59–65.
[4]   Natarajan, P. P. G., & Pandianand, G. (2010). A new method for finding an optimal solution of fully interval integer transportation problems. Applied mathematical sciences, 4(37), 1819–1830.
[5]   Kaur, A., & Kumar, A. (2012). A new approach for solving fuzzy transportation problems using generalized trapezoidal fuzzy numbers. Applied soft computing, 12(3), 1201–1213.
[6]    Gabrel, V., Lacroix, M., Murat, C., & Remli, N. (2014). Robust location transportation problems under uncertain demands. Discrete applied mathematics, 164, 100–111.
[7]  Guo, H., Wang, X., & Zhou, S. (2015). A transportation problem with uncertain costs and random supplies. International journal of e-navigation and maritime economy, 2, 1–11. DOI:https://doi.org/10.1016/j.enavi.2015.06.001
[8]  Purushothkumar, M. K., & Ananthanarayanan, M. (2015). A new ranking approach for solving fuzzy transportation problems with trapezoidal fuzzy numbers. International journal of science and research (IJSR), 2430–2433.
[9]  Akilbasha, A., Pandian, P., & Natarajan, G. (2018). An innovative exact method for solving fully interval integer transportation problems. Informatics in medicine unlocked, 11, 95–99. DOI:https://doi.org/10.1016/j.imu.2018.04.007
[10] Dantzig, G. B. (1951). Application of the simplex method to a transportation problem. https://cir.nii.ac.jp/crid/1571980075507143680
[11] Mahmoodirad, A., Salehi-Dareh-Barik, M., & Taghaodi, R. (2018). Fixed-charge Solid transportation problem with type-2 fuzzy variables. Journal of decisions and operations research, 2(3), 179–194. DOI:10.22105/dmor.2018.57823
[12] Kumar, R., Edalatpanah, S. A., Jha, S., & Singh, R. (2019). A pythagorean fuzzy approach to the transportation problem. Complex and intelligent systems, 5(2), 255–263. DOI:10.1007/s40747-019-0108-1
[13] Muthukumar, S., Srinivasan, R., & Vijayan, V. (2021). An optimal solution of unbalanced octagonal fuzzy transportation problem. Materials today: proceedings, 37, 1218–1220. DOI:https://doi.org/10.1016/j.matpr.2020.06.375
[14] Nasseri, H., & Khabiri, B. (2019). A grey transportation problem in fuzzy environment. Journal of operational research in its applications (applied mathematics)-Lahijan Azad university, 16(3), 111–122.
[15] Khalifa, H., Kumar, P., & Alharbi, M. G. (2020). Enhancement of capacitated transportation problem in fuzzy environment. Advances in fuzzy systems, 2020, 1–9.
[16] Srinivasan, R., Karthikeyan, N., Renganathan, K., & Vijayan, D. V. (2020). Method for solving fully fuzzy transportation problem to transform the materials. Materials today: proceedings, 37(2), 431–433.
[17] Sam’an, M., & Farikhin. (2021). A new fuzzy transportation algorithm for finding fuzzy optimal solution. International journal of mathematical modelling and numerical optimisation, 11(1), 1–19.
[18] Sahoo, L. (2021). A new score function based Fermatean fuzzy transportation problem. Results in control and optimization, 4, 100040. DOI:https://doi.org/10.1016/j.rico.2021.100040
[19] Pratihar, J., Kumar, R., Edalatpanah, S. A., & Dey, A. (2021). Modified Vogel’s approximation method for transportation problem under uncertain environment. Complex and intelligent systems, 7(1), 29–40. DOI:10.1007/s40747-020-00153-4
[20] Attari, H., & Nasseri, S. H. (2014). New concepts of feasibility and efficiency of solutions in fuzzy mathematical programming problems. Fuzzy information and engineering, 6(2), 203–221. DOI:https://doi.org/10.1016/j.fiae.2014.08.005
[21] Nasseri, S. H., Verdegay, J. L., & Mahmoudi, F. (2021). A New method to solve fuzzy interval flexible linear programming using a multi-objective approach. Fuzzy information and engineering, 13(2), 248–265. DOI:10.1080/16168658.2021.1906154
[22] Nasseri, S. H., Ebrahimnejad, A., Cao, B.-Y., Nasseri, S. H., Ebrahimnejad, A., & Cao, B.-Y. (2019). Fuzzy linear programming. Springer.
[23] Goodarzian, F., Shishebori, D., Nasseri, H., & Dadvar, F. (2021). A bi-objective production-distribution problem in a supply chain network under grey flexible conditions. RAIRO-operations research, 55(3), 1971–2000.
[24] Hamdy, A. T. (2007). Operations research: an introduction. Pearson Education International.