نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی صنایع، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.

2 گروه مهندسی صنایع، دانشکده مهندسی صنایع و سیستم‏ها، دانشگاه تربیت مدرس، تهران، ایران.

10.22105/dmor.2022.331167.1576

چکیده

هدف: عملکرد خوب و کارایی بالای اتاق عمل نقش مهمی در بهبود بیمارستان‌ها و کیفیت خدمات ارایه‏‌شده به بیماران دارد. اتاق عمل مرکز مالی هر بیمارستان است و حداکثر کارایی آن، پیامدهای مهمی به همراه دارد. در همین راستا به دنبال تسریع روند جریان‏ بیمار هستیم که باعث صرفه‌‏جویی در زمان و در نتیجه بهبود هزینه می‌‏شود.
روش‌شناسی پژوهش: در این پژوهش از شبیه‌‏سازی عامل بنیان برای شبیه‌‏سازی فرآیند بیمار در اتاق عمل استفاده شد. پس از اعتبارسنجی، سناریوهای بهبود تعریف و بررسی شدند.
یافته‌ها: سناریوی ترکیبی شامل تغییر زمان‌‏بندی فراخوان بیمار توسط جراح و کاهش زمان انتقال لوازم مصرفی و ست جراحی به اتاق عمل و زمان بیهوش کردن بیمار بیش‌ترین تاثیر مثبت را بر تمامی اقدامات داشته و طول اقامت بیمار را 9.69 دقیقه کاهش داده است و بعد از آن سناریوی تغییر زمان فراخوان بیمار توسط جراح با کاهش 7.31 دقیقه طول اقامت بیمار، جزو سناریوهای موثر بوده است.
اصالت/ارزش افزوده علمی: در پژوهش حاضر دریافتیم که با کاهش طول اقامت بیمار می‌‏توانیم کارایی اتاق عمل را افزایش دهیم، زیرا زمان هدررفته اتاق عمل کاهش پیدا کرده و تعداد عمل‏‌های یک شیفت افزایش پیدا می‌‏کند و با انجام حتی یک عمل بیش‌تر در روز درآمد اتاق عمل به مقدار قابل توجهی افزایش می‏‌یابد. کاهش طول اقامت بیمار باعث کاهش خستگی پرسنل و هم‌چنین کاهش هزینه‌‏های اتاق عمل (به دلیل عدم اضافه‏‌کاری کارکنان) نیز می‏‌شود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

An agent-based model of patient flow to improve operating room efficiency

نویسندگان [English]

  • Seyedeh Raahil Mousavi 1
  • Esmaeil Najafi 1
  • Mohammad Mehdi Sepehri 2

1 Department of Industrial Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.

2 Department of Industrial Engineering, Faculty of Industrial and Systems Engineering, Tarbiat Modares University, Tehran, Iran.

چکیده [English]

Purpose: High efficiency in the operating room may significantly improve the overall performance of the hospital and the service quality provided to patients. The operating room is the de facto financial hub of the hospital and maximizing its efficiency may lead to considerable improvements. To this end, we seek ways of accelerating the patient flow in order to save time and cost in healthcare facilities.
Methodology: In this study, we use agent-based simulation to simulate patient care in the operating room. After performing the required validations, a number of improvement scenarios were developed and evaluated.
Findings: A hybrid scenario including modifications to the referral time of the patient by the surgeon, transfer time of the surgical set and supplies to the operating room, and the timing of anesthesia proved to have the most positive impact on the criteria i.e. activities, reducing the average Length of Stay (LOS) by 9.69 minutes. The second-most effective scenario involved modifying the referral time of the patient by the surgeon, reduced the LOS by 7.31 minutes.
Originality/Value: Through this research, it became apparent that minimizing the patients' LOS improves the efficiency of the operating room as it helps reduce the overall idle time and increases the number of operations carried out in each shift. Making time even for one additional operation per day significantly increases the operating room income. Moreover, a shorter LOS means less fatigue for the medical staff and reduces the total cost of running the operating room by reducing the staff's overtime hours.

کلیدواژه‌ها [English]

  • Operating room
  • Length of stay
  • Patient flow
  • Agent based simulation
[1]     World Health Organization. (2013). Global action plan for the prevention and control of noncommunicable diseases 2013-2020. World Health Organization.
[2]     Denton, B., Viapiano, J., & Vogl, A. (2007). Optimization of surgery sequencing and scheduling decisions under uncertainty. Health care management science, 10, 13–24.
[3]     Rothstein, D. H., & Raval, M. V. (2018). Operating room efficiency [presentation]. Seminars in pediatric surgery (Vol. 27, pp. 79–85).
[4]     Guido, R., & Conforti, D. (2017). A hybrid genetic approach for solving an integrated multi-objective operating room planning and scheduling problem. Computers & operations research, 87, 270–282.
[5]     Borshchev, A., & Filippov, A. (2004). From system dynamics and discrete event to practical agent based modeling: reasons, techniques, tools [presentation]. Proceedings of the 22nd international conference of the system dynamics society (Vol. 22, pp. 25–29).
[6]     North, M. J., & Macal, C. M. (2007). Managing business complexity: discovering strategic solutions with agent-based modeling and simulation. Oxford University Press.
[7]     Maes, P. (1993). Modeling adaptive autonomous agents. Artificial life, 1(1/2), 135–162.
[8]     Russell, A. D. (2003). Similarities and differences in the responses of microorganisms to biocides. Journal of antimicrobial chemotherapy, 52(5), 750–763.
[9]     Santibáñez, P., Begen, M., & Atkins, D. (2007). Surgical block scheduling in a system of hospitals: an application to resource and wait list management in a British Columbia health authority. Health care management science, 10, 269–282.
[10]   Latorre-Núñez, G., Lüer-Villagra, A., Marianov, V., Obreque, C., Ramis, F., & Neriz, L. (2016). Scheduling operating rooms with consideration of all resources, post anesthesia beds and emergency surgeries. Computers & industrial engineering, 97, 248–257.
[11]   Sagnol, G., Barner, C., Borndörfer, R., Grima, M., Seeling, M., Spies, C., & Wernecke, K. (2016). Robust allocation of operating rooms: a cutting plane approach to handle lognormal case durations and emergency arrivals. Zuse Institute Berlin.
[12]   Fairley, M., Scheinker, D., & Brandeau, M. L. (2019). Improving the efficiency of the operating room environment with an optimization and machine learning model. Health care management science, 22, 756–767.
[13]   Naderi, B., Roshanaei, V., Begen, M. A., Aleman, D. M., & Urbach, D. R. (2021). Increased surgical capacity without additional resources: Generalized operating room planning and scheduling. Production and operations management, 30(8), 2608–2635.
[14]   Park, J., Kim, B. I., Eom, M., & Choi, B. K. (2021). Operating room scheduling considering surgeons’ preferences and cooperative operations. Computers & industrial engineering, 157, 107306. https://www.sciencedirect.com/science/article/pii/S0360835221002102
[15]   Maghzi, P., Mohammadi, M., Pasandideh, S. H. R., & Naderi, B. (2022). Operating room scheduling optimization based on a fuzzy uncertainty approach and metaheuristic algorithms. International journal of engineering, 35(2), 258–275.
[16]   Li, Q., Liu, Y., Sipahi Döngül, E., Yang, Y., Ruan, X., & Enbeyle, W. (2022). Operating room planning for emergency surgery: optimization in multiobjective modeling and management from the latest developments in computational intelligence techniques. Computational intelligence and neuroscience, 2022. https://www.hindawi.com/journals/cin/2022/2290644/
[17]   Meliana, I. R., Purwoko, P., Aisyati, A., Piyandari, Y., & Rosyidi, C. N. (2022). An optimization model and decision support system of operating room scheduling in a teaching hospital. Computer science and information engineering, 25(5), 883–891.
[18]   Markazi-Moghaddam, N., Jame, S. Z. B., & Tofighi, E. (2020). Evaluating patient flow in the operating theater: An exploratory data analysis of length of stay components. Informatics in medicine unlocked, 19, 100354. https://www.sciencedirect.com/science/article/pii/S235291482030068X
[19]   Karimi, A., Sepehri, M. M., & Yavari, E. (2020). A simulation model approach to decrease the length of stay of patients undergoing cataract surgery. Perioperative care and operating room management, 21, 100133. https://www.sciencedirect.com/science/article/pii/S2405603020300480
[20]   Eskandari, H., & Bahrami, M. (2017). Multi-objective operating room scheduling using simulation-based optimization. Advances in industrial engineering, 51(1), 1–13.
[21]   Imani Imanlo, M., & Atighe Chian, A. (2016). Daily scheduling of operating rooms under uncertainty with a simulation-based optimization approach. Industrial management perspective, 7(26), 53–82.
[22]   Xiang, W., Yin, J., & Lim, G. (2015). An ant colony optimization approach for solving an operating room surgery scheduling problem. Computers & industrial engineering, 85, 335–345.
[23]   Abbasi Siar, S., Keramati, M. A., & Motadel, M. (2021). Agent-based simulation consumer behavior in impulse buying. Industrial management studies, 19(62), 99–138.
[24]   Abolfathi, E., Eshlaghy, A. T., & Zadeh, M. R. H. (2022). Enhancing diffusion of innovation through operational analysis of agent-based modelling. Journal of industrial management perspective, 10(1), 117–142.
[25]   Ricci, W. M., Brandt, A., Mcandrew, C., & Gardner, M. J. (2015). Factors effecting delay to surgery and length of stay for hip fracture patients. Journal of orthopaedic trauma, 29(3), e109. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4339640/
[26]   Saadouli, H., Masmoudi, M., Jerbi, B., & Dammak, A. (2014). An optimization and simulation approach for operating room scheduling under stochastic durations [presentation]. 2014 international conference on control, decision and information technologies (codit) (pp. 257–262).
[27]   Landa, P., Aringhieri, R., Soriano, P., Tànfani, E., & Testi, A. (2016). A hybrid optimization algorithm for surgeries scheduling. Operations research for health care, 8, 103–114.
[28]   Persson, M., Hvitfeldt-Forsberg, H., Unbeck, M., Sköldenberg, O. G., Stark, A., Kelly-Pettersson, P., & Mazzocato, P. (2017). Operational strategies to manage non-elective orthopaedic surgical flows: a simulation modelling study. BMJ open, 7(4), e013303. https://bmjopen.bmj.com/content/7/4/e013303.abstract
[29]   Etter, K., Lerner, J., Kalsekar, I., de Moor, C., Yoo, A., & Swank, M. (2018). Comparative analysis of hospital length of stay and discharge status of two contemporary primary total knee systems. The journal of knee surgery, 31(06), 541–550.
[30]   Bhandari, M., Wilson, C., Rifkind, K., DiMaggio, C., & Ayoung-Chee, P. (2017). Prolonged length of stay in delayed cholecystectomy is not due to intraoperative or postoperative contributors. Journal of surgical research, 219, 253–258.
[31]   Lyons, J., McCaulley, L., Maronian, N., & Hardacre, J. M. (2019). A targeted initiative to discharge surgical patients earlier in the day is associated with decreased length of stay and improved hospital throughput. The American journal of surgery, 217(3), 419–422.
[32]   Boylan, M. R., Riesgo, A. M., Chu, A., Paulino, C. B., & Feldman, D. S. (2019). Costs and complications of increased length of stay following adolescent idiopathic scoliosis surgery. Journal of pediatric orthopaedics b, 28(1), 27–31.
[33]   Khasha, R., Sepehri, M. M., & Khatibi, T. (2018). An analytical model based on simulation aiming to improve patient flow in a hospital surgical suite. Journal of industrial and systems engineering, 12(1), 66–82.
[34]   Lee, D. J., Ding, J., & Guzzo, T. J. (2019). Improving operating room efficiency. Current urology reports, 20, 1–8.
[35]   Saeedian, M., Sepehri, M. M., Jalalimanesh, A., & Shadpour, P. (2019). Operating room orchestration by using agent-based simulation. Perioperative care and operating room management, 15, 100074. https://www.sciencedirect.com/science/article/pii/S2405603018300372
[36]   Abdelghany, M., & Eltawil, A. B. (2014). Individual versus integrated simulation techniques in healthcare applications [presentation]. 2014 IEEE international conference on industrial engineering and engineering management (pp. 1214–1218).
[37]   Rohleder, T. R., Lewkonia, P., Bischak, D. P., Duffy, P., & Hendijani, R. (2011). Using simulation modeling to improve patient flow at an outpatient orthopedic clinic. Health care management science, 14, 135–145.
[38]   Paul, J. A., & Lin, L. (2012). Models for improving patient throughput and waiting at hospital emergency departments. The journal of emergency medicine, 43(6), 1119–1126.
[39]   Jin, X., Sivakumar, A. I., & Lim, S. Y. (2013). A simulation based analysis on reducing patient waiting time for consultation in an outpatient eye clinic [presentation]. 2013 winter simulations conference (WSC) (pp. 2192–2203).
[40]   Kadri, F., Chaabane, S., & Tahon, C. (2014). A simulation-based decision support system to prevent and predict strain situations in emergency department systems. Simulation modelling practice and theory, 42, 32–52.
[41]   Laskowski, M., McLeod, R. D., Friesen, M. R., Podaima, B. W., & Alfa, A. S. (2009). Models of emergency departments for reducing patient waiting times. PloS one, 4(7), e6127.
[42]   Zakaria, Z. Y., Amin, N. A. S., & Linnekoski, J. (2013). A perspective on catalytic conversion of glycerol to olefins. Biomass and bioenergy, 55, 307–385.
[43]   Wang, Y., Luangkesorn, K. L., & Shuman, L. (2012). Modeling emergency medical response to a mass casualty incident using agent based simulation. Socio-economic planning sciences, 46(4), 281–290.
[44]   Cabrera, E., Taboada, M., Iglesias, M. L., Epelde, F., & Luque, E. (2012). Simulation optimization for healthcare emergency departments. Procedia computer science, 9, 1464–1473.
[45]   Centeno, A. P., Martin, R., & Sweeney, R. (2013). REDSim: a spatial agent-based simulation for studying emergency departments [presentation]. 2013 winter simulations conference (wsc) (pp. 1431–1442).
[46]   Taboada, M., Cabrera, E., Luque, E., Epelde, F., & Iglesias, M. L. (2013). Modeling, simulation and optimization of resources management in hospital emergency departments using the agent-based approach. Advances in computational modeling research, 1, 1–31.
[47]   Behr, J. G., & Diaz, R. (2016). Emergency department frequent utilization for non-emergent presentments: results from a regional urban trauma center study. PLoS one, 11(1), e0147116. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0147116
[48]   Faezipour, M., & Ferreira, S. (2013). A system dynamics perspective of patient satisfaction in healthcare. Procedia computer science, 16, 148–156.
[49]   Lim, M. E., Worster, A., Goeree, R., & Tarride, J. É. (2013). Simulating an emergency department: the importance of modeling the interactions between physicians and delegates in a discrete event simulation. BMC medical informatics and decision making, 13(1), 1–11.
[50]   Rohleder, T. R., Bischak, D. P., & Baskin, L. B. (2007). Modeling patient service centers with simulation and system dynamics. Health care management science, 10, 1–12.
[51]   Revetria, R., Mosca, R., Cassetari, L., Guizzi, G., Romano, E., & Santillo, L. C. (2012). Advanced modeling methodology based on system dynamics in healthcare [presentation]. Proceedings of the 6th wseas international conference on computer engineering and applications, and proceedings of the 2012 american conference on applied mathematics (pp. 127–132).
[52]   Zulkepli, J., Eldabi, T., & Mustafee, N. (2012). Hybrid simulation for modelling large systems: an example of integrated care model [presentation]. Proceedings of the 2012 winter simulation conference (WSC) (pp. 1–12).
[53]   Djanatliev, A., German, R., Kolominsky-Rabas, P., & Hofmann, B. M. (2012). Hybrid simulation with loosely coupled system dynamics and agent-based models for prospective health technology assessments [presentation]. Proceedings of the 2012 winter simulation conference (WSC) (pp. 1–12).
[54]   Anagnostou, A., Nouman, A., & Taylor, S. J. E. (2013). Distributed hybrid agent-based discrete event emergency medical services simulation [presentation]. 2013 winter simulations conference (WSC) (pp. 1625–1636).
[55]   Ahmad, N., Ghani, N. A., Kamil, A. A., & Mat Tahar, R. (2013). Modeling emergency department using a hybrid simulation approach [presentation]. IAENG transactions on engineering technologies: special volume of the world congress on engineering 2012 (pp. 701–711).
[56]   Viana, J., Brailsford, S. C., Harindra, V., & Harper, P. R. (2014). Combining discrete-event simulation and system dynamics in a healthcare setting: A composite model for Chlamydia infection. European journal of operational research, 237(1), 196–206.
[57]   Song, L., & Guo, X. (2015). Research on optimization of clinical pathway execution based on multi-agent simulation [presentation]. Proceedings of the 2015 international conference on modeling, simulation and applied mathematics (pp. 136–139).
[58]   Kalton, A., Falconer, E., Docherty, J., Alevras, D., Brann, D., & Johnson, K. (2016). Multi-agent-based simulation of a complex ecosystem of mental health care. Journal of medical systems, 40, 1–8.