نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی صنایع، دانشکده فنی و مهندسی، دانشگاه شهید باهنر، کرمان، ایران.

2 گروه مهندسی صنایع، دانشکده فنی و مهندسی، دانشگاه فردوسی، مشهد، ایران.

چکیده

هدف: مساله مکان­‌یابی-مسیر­یابی (LRP) یک مساله استراتژیک در طراحی زنجیره‌تامین برای پاسخ‌گویی به نیاز مشتری است. این‌گونه مسایل شامل انتخاب بهینه یک یا چند انبار از بین تعدادی نقاط بالقوه و تعیین کوتاه‌ترین مسیرهای تامین نیاز مشتری است. با توجه به نقش حمل‌ونقل در تولید آلاینده‌ها در طی سال‌های گذشته، اهمیت در­نظر گرفتن لجستیک سبز برای کاهش اثرات زیست‌محیطی حمل‌ونقل بسیار مهم شده است.
روش‌شناسی پژوهش: برای جبران شکاف موجود در ادبیات، این مقاله یک مدل برنامه‌ریزی خطی عدد صحیح مختلط دوهدفه (MILP) برای مساله مسیریابی مکان‌یابی ظرفیت سبز (G-CLRP) با عدم قطعیت تقاضا و احتمال شکست در انبارها و مسیرها ارایه می‌کند.
یافته‌ها: نتیجه نهایی این مدل چندهدفه استوار، راه‌اندازی انبارها و انتخاب مسیرهایی است که بالاترین قابلیت اطمینان (به حداکثر رساندن خدمات شبکه) را ارایه می‌دهند و در عین حال، کمترین هزینه و آلودگی زیست‌محیطی را تحمیل می‌کنند. این مقاله همچنین یک تحلیل عددی و یک تحلیل حساسیت راه‌حل‌های مدل را ارایه می‌کند.
اصالت/ارزش افزوده علمی: تعیین انبارهای پشتیبان و افزایش قابلیت سرویس‌دهی شبکه برای مشکلات مسیریابی مکان.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Development of a robust multi-objective model for green capacitated location-routing under crisis conditions with time value of money

نویسندگان [English]

  • Shima Roosta 1
  • Seyed Milad Mirnajafi Zadeh 2
  • Hamid Bazargan Harandi 1

1 Department of Industrial Engineering, Technical and Engineering Faculty, Shahid Bahonar University, Kerman, Iran.

2 Department of Industrial Engineering, Technical and Engineering Faculty, Ferdowsi University of Mashhad, Iran.

چکیده [English]

Purpose: Location-Routing Problem (LRP) is a strategic supply chain design problem aimed at meeting customer demands. LRPs involve selecting one or more depot sites from a set of potential locations and determining the best routes to connect them to demand points. With the rising awareness about the environmental impacts of transportation over the past years, using green logistics to mitigate these impacts has become increasingly important.
Methodology: To compensative a gap in the literature, this paper presents a robust bi-objective Mixed-Integer Linear Programming (MILP) model for the Green Capacitated Location-Routing Problem (G-CLRP) with demand uncertainty and the possibility of failure in depots and routes.
Findings: The final result of this robust multi-objective model is to set up the depots and select the routes that offer the highest reliability (maximizing network service) while imposing the lowest cost and environmental pollution. The paper also provides a numerical analysis and a sensitivity analysis of the solutions of the model.
Originality/Value: Determining backup depots and increasing network serviceability for LRPs.

کلیدواژه‌ها [English]

  • Mixed integer linear programming
  • Green capacitated location-routing
  • Crisis management
  • Robust optimization
  • Time value of money
[1]     Simchi-Levi, D., Kaminsky, P., Simchi-Levi, E. (2004). Managing the supply chain: the definitive guide for the business professional. https://digital.library.tu.ac.th/tu_dc/frontend/Info/item/dc:272468.
[2]     Rand, G. K. (1976). Methodological choices in depot location studies. Journal of the operational research society, 27, 241–249.
[3]     Contardo, C., Hemmelmayr, V., & Crainic, T. G. (2012). Lower and upper bounds for the two-echelon capacitated location-routing problem. Computers & operations research, 39(12), 3185–3199.
[4]     Prodhon, C., & Prins, C. (2014). A survey of recent research on location-routing problems. European journal of operational research, 238(1), 1–17.
[5]     Mohamed, I. B., Klibi, W., Sadykov, R., Sen, H., & Vanderbeck, F. (2023). The two-echelon stochastic multi-period capacitated location-routing problem. European journal of operational research, 306(2), 645–667.
[6]     Toro, E. M., Franco, J. F., Echeverri, M. G., & Guimarães, F. G. (2017). A multi-objective model for the green capacitated location-routing problem considering environmental impact. Computers & industrial engineering, 110, 114–125.
[7]     Nagy, G., & Salhi, S. (2007). Location-routing: Issues, models and methods. European journal of operational research, 177(2), 649–672.
[8]     Lopes, R. B., Ferreira, C., Santos, B. S., & Barreto, S. (2013). A taxonomical analysis, current methods and objectives on location-routing problems. International transactions in operational research, 20(6), 795–822.
[9]     Ponboon, S., Qureshi, A. G., & Taniguchi, E. (2016). Branch-and-price algorithm for the location-routing problem with time windows. Transportation research part E: logistics and transportation review, 86, 1–19.
[10]   Drexl, M., & Schneider, M. (2015). A survey of variants and extensions of the location-routing problem. European journal of operational research, 241(2), 283–308.
[11]   Bent, R. W., & Van Hentenryck, P. (2004). Scenario-based planning for partially dynamic vehicle routing with stochastic customers. Operations research, 52(6), 977–987.
[12]   Prins, C., Prodhon, C., & Calvo, R. W. (2006). Solving the capacitated location-routing problem by a GRASP complemented by a learning process and a path relinking. 4or, 4, 221–238.
[13]   Barreto, S., Ferreira, C., Paixao, J., & Santos, B. S. (2007). Using clustering analysis in a capacitated location-routing problem. European journal of operational research, 179(3), 968–977.
[14]   Balcik, B., & Beamon, B. M. (2008). Facility location in humanitarian relief. International journal of logistics, 11(2), 101–121.
[15]   Vincent, F. Y., Lin, S. W., Lee, W., & Ting, C.-J. (2010). A simulated annealing heuristic for the capacitated location routing problem. Computers & industrial engineering, 58(2), 288–299.
[16]   Duhamel, C., Lacomme, P., Prins, C., & Prodhon, C. (2010). A GRASP×ELS approach for the capacitated location-routing problem. Computers & operations research, 37(11), 1912–1923.
[17]   Li, X., & Ouyang, Y. (2010). A continuum approximation approach to reliable facility location design under correlated probabilistic disruptions. Transportation research part B: methodological, 44(4), 535–548.
[18]   Peng, P., Snyder, L. V, Lim, A., & Liu, Z. (2011). Reliable logistics networks design with facility disruptions. Transportation research part B: methodological, 45(8), 1190–1211.
[19]   Bozorgi-Amiri, A., Jabalameli, M. S., & Mirzapour Al-e-Hashem, S. M. J. (2013). A multi-objective robust stochastic programming model for disaster relief logistics under uncertainty. OR spectrum, 35, 905–933.
[20]   Cardona-Valdés, Y., Álvarez, A., & Ozdemir, D. (2011). A bi-objective supply chain design problem with uncertainty. Transportation research part C: emerging technologies, 19(5), 821–832.
[21]   Jokar, A., & Sahraeian, R. (2012). A heuristic based approach to solve a capacitated location-routing problem. Journal of managment & sustainability, 2, 219. https://heinonline.org/HOL/LandingPage?handle=hein.journals/jms2&div=44&id=&page=
[22]   Cui, T., Ouyang, Y., & Shen, Z. J. M. (2010). Reliable facility location design under the risk of disruptions. Operations research, 58(4-part-1), 998–1011.
[23]   Escobar, J. W., Linfati, R., & Toth, P. (2013). A two-phase hybrid heuristic algorithm for the capacitated location-routing problem. Computers & operations research, 40(1), 70–79.
[24]   Ghaffari-Nasab, N., Jabalameli, M. S., Aryanezhad, M. B., & Makui, A. (2013). Modeling and solving the bi-objective capacitated location-routing problem with probabilistic travel times. The international journal of advanced manufacturing technology, 67, 2007–2019.
[25]   Golozari, F., Jafari, A., & Amiri, M. (2013). Application of a hybrid simulated annealing-mutation operator to solve fuzzy capacitated location-routing problem. The international journal of advanced manufacturing technology, 67, 1791–1807.
[26]   Zarandi, M. H. F., Hemmati, A., Davari, S., & Turksen, I. B. (2013). Capacitated location-routing problem with time windows under uncertainty. Knowledge-based systems, 37, 480–489.
[27]   Mehrjerdi, Y. Z., & Nadizadeh, A. (2013). Using greedy clustering method to solve capacitated location-routing problem with fuzzy demands. European journal of operational research, 229(1), 75–84.
[28]   Ahmadi-Javid, A., & Seddighi, A. H. (2013). A location-routing problem with disruption risk. Transportation research part E: logistics and transportation review, 53, 63–82.
[29]   Gounaris, C. E., Wiesemann, W., & Floudas, C. A. (2013). The robust capacitated vehicle routing problem under demand uncertainty. Operations research, 61(3), 677–693.
[30]   Azad, N., Davoudpour, H., Saharidis, G. K. D., & Shiripour, M. (2014). A new model to mitigating random disruption risks of facility and transportation in supply chain network design. The international journal of advanced manufacturing technology, 70, 1757–1774.
[31]   Rennemo, S. J., Rø, K. F., Hvattum, L. M., & Tirado, G. (2014). A three-stage stochastic facility routing model for disaster response planning. Transportation research part E: logistics and transportation review, 62, 116–135.
[32]   An, Y., Zeng, B., Zhang, Y., & Zhao, L. (2014). Reliable p-median facility location problem: two-stage robust models and algorithms. Transportation research part B: methodological, 64, 54–72.
[33]   Karaoglan, I., & Altiparmak, F. (2015). A memetic algorithm for the capacitated location-routing problem with mixed backhauls. Computers & operations research, 55, 200–216.
[34]   Peng, Z., Manier, H., & Manier, M. A. (2017). Particle swarm optimization for capacitated location-routing problem. IFAC-papersonline, 50(1), 14668–14673.
[35]   Huang, S. H. (2015). Solving the multi-compartment capacitated location routing problem with pickup--delivery routes and stochastic demands. Computers & industrial engineering, 87, 104–113.
[36]   Zhang, Y., Qi, M., Lin, W. H., & Miao, L. (2015). A metaheuristic approach to the reliable location routing problem under disruptions. Transportation research part E: logistics and transportation review, 83, 90–110.
[37]   Lopes, R. B., Ferreira, C., & Santos, B. S. (2016). A simple and effective evolutionary algorithm for the capacitated location--routing problem. Computers & operations research, 70, 155–162.
[38]   Tang, L., Zhu, C., Lin, Z., Shi, J., & Zhang, W. (2016). Reliable facility location problem with facility protection. PloS one, 11(9), e0161532. https://doi.org/10.1371/journal.pone.0161532
 [39] de Queiroz, T. A., Oliveira, J. F., Carravilla, M. A., & Miyazawa, F. K. (2016). Demand uncertainty for the location-routing problem with two-dimensional loading constraints [presentation]. Computational management science: state of the art 2014 (pp. 47–53).
[40]   Quintero-Araujo, C. L., Caballero-Villalobos, J. P., Juan, A. A., & Montoya-Torres, J. R. (2017). A biased-randomized metaheuristic for the capacitated location routing problem. International transactions in operational research, 24(5), 1079–1098.
[41]   Sadegheih, A. (2017). A hybrid heuristic algorithm to solve capacitated location-routing problem with fuzzy‎ demands‎. International journal of industrial mathematics, 9(1), 1–20.
[42]   Chang, K., Zhou, H., Chen, G., & Chen, H. (2017). Multiobjective location routing problem considering uncertain data after disasters. Discrete dynamics in nature and society, 2017. https://doi.org/10.1155/2017/1703608
[43]   Farham, M. S., Süral, H., & Iyigun, C. (2018). A column generation approach for the location-routing problem with time windows. Computers & operations research, 90, 249–263.
[44]   Madani, S. R., Nookabadi, A. S., & Hejazi, S. R. (2018). A bi-objective, reliable single allocation p-hub maximal covering location problem: Mathematical formulation and solution approach. Journal of air transport management, 68, 118–136.
[45]   Zhang, B., Li, H., Li, S., & Peng, J. (2018). Sustainable multi-depot emergency facilities location-routing problem with uncertain information. Applied mathematics and computation, 333, 506–520.
[46]   Ghaderi, A. (2018). A robust optimization model for the single-depot capacitated location-routing problem. International journal of computer and information engineering, 12(7), 504–508.
[47]   Zhao, Q., Wang, W., & De Souza, R. (2018). A heterogeneous fleet two-echelon capacitated location-routing model for joint delivery arising in city logistics. International journal of production research, 56(15), 5062–5080.
[48]   Hosseini, M. B., Dehghanian, F., & Salari, M. (2019). Selective capacitated location-routing problem with incentive-dependent returns in designing used products collection network. European journal of operational research, 272(2), 655–673.
[49]   Pekel, E., & Kara, S. S. (2019). Solving fuzzy capacitated location routing problem using hybrid variable neighborhood search and evolutionary local search. Applied soft computing, 83, 105665. https://doi.org/10.1016/j.asoc.2019.105665
[50]   Tirkolaee, E. B., Mahmoodkhani, J., Bourani, M. R., & Tavakkoli-Moghaddam, R. (2019). A self-learning particle swarm optimization for robust multi-echelon capacitated location--allocation--inventory problem. Journal of advanced manufacturing systems, 18(04), 677–694.
[51]   Oudouar, F., Lazaar, M., & El Miloud, Z. (2020). A novel approach based on heuristics and a neural network to solve a capacitated location routing problem. Simulation modelling practice and theory, 100, 102064. https://doi.org/10.1016/j.simpat.2019.102064.
[52]   Zhang, H., Liu, F., Ma, L., & Zhang, Z. (2020). A hybrid heuristic based on a particle swarm algorithm to solve the capacitated location-routing problem with fuzzy demands. IEEE access, 8, 153671–153691.
[53]   Wang, M., Bell, M. G. H., & Miao, L. (2020). A branch-and-price algorithm for a green two-echelon capacitated location routing problem. https://ses.library.usyd.edu.au/handle/2123/21882
[54]   Akpunar, Ö. S., & Akpinar, S. (2021). A hybrid adaptive large neighbourhood search algorithm for the capacitated location routing problem. Expert systems with applications, 168, 114304. https://doi.org/10.1016/j.eswa.2020.114304.
[55]   Negrotto, D., & Loiseau, I. (2021). A branch & cut algorithm for the prize-collecting capacitated location routing problem. Top, 29(1), 34–57.
[56]   Vincent, F. Y., Normasari, N. M. E., & Chen, W. H. (2021). Location-routing problem with time-dependent demands. Computers & industrial engineering, 151, 106936. https://doi.org/10.1016/j.cie.2020.106936.
[57]   Ziaei, Z., & Jabbarzadeh, A. (2021). A multi-objective robust optimization approach for green location-routing planning of multi-modal transportation systems under uncertainty. Journal of cleaner production, 291, 125293. https://doi.org/10.1016/j.jclepro.2020.125293.
[58]   Turkensteen, M. (2017). The accuracy of carbon emission and fuel consumption computations in green vehicle routing. European journal of operational research, 262(2), 647–659.
[59]   Chen, D. S., Batson, R. G., & Dang, Y. (2011). Applied integer programming: modeling and solution. John Wiley & Sons.
[60]   Mulvey, J. M., & Ruszczyński, A. (1995). A new scenario decomposition method for large-scale stochastic optimization. Operations research, 43(3), 477–490.
[61]   Pan, F., & Nagi, R. (2010). Robust supply chain design under uncertain demand in agile manufacturing. Computers & operations research, 37(4), 668–683.
[62]   Yu, C. S., & Li, H. L. (2000). A robust optimization model for stochastic logistic problems. International journal of production economics, 64(1–3), 385–397.
[63]   Haimes, Y. (1971). On a bicriterion formulation of the problems of integrated system identification and system optimization. IEEE transactions on systems, man, and cybernetics, (3), 296–297.
[64]   Fan, J., & Wang, G. (2018). Joint optimization of dynamic lot and warehouse sizing problems. European journal of operational research, 267(3), 849–854.
[65]   Cao, E., Lai, M., & Yang, H. (2014). Open vehicle routing problem with demand uncertainty and its robust strategies. Expert systems with applications, 41(7), 3569–3575.
[66]   Ruiz, E., Soto-Mendoza, V., Barbosa, A. E. R., & Reyes, R. (2019). Solving the open vehicle routing problem with capacity and distance constraints with a biased random key genetic algorithm. Computers & industrial engineering, 133, 207–219.
[67]   Shiripour, S., Mahdavi-Amiri, N., & Mahdavi, I. (2017). A transportation network model with intelligent probabilistic travel times and two hybrid algorithms. Transportation letters, 9(2), 90–122.
[68]   Fazayeli, S., Eydi, A., & Kamalabadi, I. N. (2018). Location-routing problem in multimodal transportation network with time windows and fuzzy demands: Presenting a two-part genetic algorithm. Computers & industrial engineering, 119, 233–246.
[69]   Cardoso, S. R., Barbosa-Póvoa, A. P. F. D., & Relvas, S. (2013). Design and planning of supply chains with integration of reverse logistics activities under demand uncertainty. European journal of operational research, 226(3), 436–451.
[70]   Université Paris-Nord. (2010). Classical instances for LRP. http://prodhonc.free.fr/Instances/instances_us.htm