نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی برق، پردیس صنعتی شهدای هویزه، دانشگاه شهید چمران اهواز، دشت آزادگان، خوزستان، ایران.

2 گروه ریاضی، دانشگاه صنعتی خاتم‌الانبیاء بهبهان، خوزستان، ایران.

10.22105/dmor.2021.291162.1427

چکیده

هدف: در کار با مجموعه‌های فازی شهودی بازه‌ای-مقدار به دلیل در نظر گرفتن تابع عضویت و عدم عضویت به‌صورت هم‌زمان و همین‌طور به علت بازه‌ای بودن نوع داده‌ها، با انعطاف‌پذیری بسیاری برای تخصیص داده از جانب تصمیم‌گیرنده روبرو هستیم. با وجود اهمیت ناشی از این نوع ویژگی‌های مربوط به مجموعه‌های فازی شهودی-بازه‌ای مقدار، که خود از دلایل به‌کارگیری روزافزون آن‌ها در مسایل مختلف و به ویژه تصمیم‌گیری چند معیاره است، مقایسه‌ بین آن‌ها به‌عنوان یکی از اولین مفاهیم در فرآیند تصمیم‌گیری، کار چندان ساده­ای به نظر نمی‌رسد. در ادبیات موضوعی کمتر می‌توان روشی جامع و پارامتری برای رتبه‌بندی این نوع از اعداد یافت برای رفع این کاستی، در این مقاله با رویکردی تلفیقی، روشی کارآمد و پارامتری برای اولویت‌بندی بین اعداد فازی شهودی بازه‌ای-مقدار ارائه می‌دهیم. سپس به‌منظور اولویت‌بندی بین پیمانکاران رویکرد را برای ارزیابی کیفی صلاحیت آن‌ها به کار می‌بریم.
روش‌شناسی پژوهش: در این مطالعه، از مجموعه­ های فازی شهودی بازه­ای مقدار در مسئله تصمیم ­گیری چند معیاره استفاده شده است. ابتدا با توسیع روشی پارامتری در رتبه‌بندی اعداد فازی، اندیس بازه­ای متناظر با اعداد فازی شهودی بازه­ای مقدار را معرفی می­کنیم. در ادامه با استفاده از رویکرد مطرح‌شده توسط زنگ و همکاران (2019)، تعیین ارجحیت بین بازه­ ها امکان‌پذیر شده است. در نتیجه، رویکردی ترکیبی و پارامتری در بخش 3، برای تعیین ارجحیت بین اعداد فازی شهودی بازه ­ای مقدار به دست آمده است (جدول 1). در مثالی کاربردی برای ارزیابی پیمانکاران بر اساس سه معیار و با در اختیار داشتن پنج گزینه (پیمانکار) شیوه ستفاده از این دیدگاه آزموده شده است.
یافتهها: روشی نوین و پارامتری برای رتبه‌بندی اعداد فازی شهودی بازه­ای مقدار به‌منظور بهره ­گیری در ارزیابی واحدهای عملیاتی معرفی شد. چندین ویژگی برای اندیس بازه ­ای پیشنهادی ذکر کردیم. علاوه بر این، با ارائه یک مثال عملی ضمن توصیف عملکرد فرآیند، خروجی کار مشاهده می‌شود. پارامتری بودن روش به‌عنوان یک مزیت می­تواند مبین تاثیرگذاری نقش و دیدگاه تصمیم‌گیرنده در مقادیر نهایی پاسخ بر اساس سطح انتظار مطلوب باشد.
اصالت/ارزش افزوده علمی: ضمن معرفی یک روش پارامتری جدید برای تعیین ارجحیت بین مجموعه‌های فازی شهودی بازه ­ای مقدار، فرآیند کارایی برای ارزیابی کیفی صلاحیت پیمانکاران ارائه شده است. علاوه بر این برخی از ویژگی‌ها برای راستی آزمائی عملکرد اندیس بازه‌ای مطرح شد.




 

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Interval valued fuzzy sets; application in the decision-making process related to the qualitative qualification of contractors

نویسندگان [English]

  • Madineh Farnam 1
  • Majid Darehmiraki 2

1 Department of Electrical Engineering, Shohadaye Hoveizeh Campus of Technology, Shahid Chamran University of Ahvaz, Dasht-e Azadegan, Khuzestan, Iran.

2 Department of Mathematics, Khatam Alanbia University of Technology, Behbahan, Khuzestan, Iran.

چکیده [English]

Purpose: In working with Interval-valued intuitionistic fuzzy sets according to considering the membership and non-membership function simultaneously, as well as the interval of the data type, we face to a lot of flexibility to allocate data by the decision maker. Comparison between them, as one of the first concepts in the decision-making process, does not seem so simple. For this purpose, in this paper we present an integrated and efficient method and a new way to prioritize interval-valued intuitionistic fuzzy numbers. Then we apply this method to assess the qualitative qualification of contractors.
Methodology: Use interval valued intuitionistic fuzzy sets along with multi criteria decision making.
Findings: New ranking method of interval valued intuitionistic fuzzy sets is apllied in evaluating operational units. In addition, by giving a practical example while describing the process performance, the output of the work is observed.
Originality/Value: A new method is proposed to determine the preference between interval valued intuitionistic fuzzy sets. In addition, an efficiency process is introduced to assess the qualitative qualification of contractors.




 

کلیدواژه‌ها [English]

  • Interval valued numbers
  • Intuitionistic fuzzy sets
  • Interval valued intuitionistic fuzzy sets
  • Ranking interval valued intuitionistic fuzzy numbers
  • Multi-criteria decision making
Alefeld, G., & Herzberger, J. (1983). Introduction to interval computation. Academic Press.‏ https://search.library.uq.edu.au/primo-explore/fulldisplay?vid=61UQ&tab=61uq
_all&docid=61UQ_ALMA21100178580003131&lang=en_US&context=L
Atanassov, K. T. (1986). Intuitionistic Fuzzy Sets. Fuzzy sets and systems, 20(1), 87-96. https://doi.org/10.1016/S0165-0114(86)80034-3
Atanassov, K. T. (1999). Interval valued intuitionistic fuzzy sets. In Intuitionistic fuzzy sets, 35, (pp. 139-177). Physica, Heidelberg.‏ https://doi.org/10.1007/978-3-7908-1870-3_2
Atanassov, K. T., & Gargov, G. (1989). Interval-Valued Intuitionistic Fuzzy Sets.  Fuzzy Sets and Systems, 31(3), 343-349. https://doi.org/10.1016/0165-0114(89)90205-4
Azizi, H., Amir Teymori, A., & Farzipour Samen, R. (2018). Supplier selection based on optimistic and pessimistic perspectives. Journal of development & evolution mnagement, 31(4), 11-20. (In Persian). http://www.jdem.ir/article_538521.html
Bharati, S. K., & Singh, S. R. (2018). A new interval-valued intuitionistic fuzzy numbers: ranking methodology and application. New mathematics and natural computation14(03), 363-381.‏ https://doi.org/10.1142/S1793005718500229
Dong, J. Y., & Wan, S. P. (2015). Interval-valued trapezoidal intuitionistic fuzzy generalized aggregation operators and application to multi-attribute group decision making. Scientia Iranica22(6), 2702-2715.‏
Ebrahimnejad, A., & Verdegay, J. L. (2016). An efficient computational approach for solving type-2 intuitionistic fuzzy numbers based transportation problems. International journal of computational intelligence systems9(6), 1154-1173.‏ https://doi.org/10.1080/18756891.2016.1256576
El-Sawalhi, N., Eaton, D., & Rustom, R. (2007). Contractor pre-qualification model: state-of-the-art. International journal of project management25(5), 465-474.‏ https://doi.org/10.1016/j.ijproman.2006.11.011
Ezzati, R., Allahviranloo, T., Khezerloo, S., & Khezerloo, M. (2012). An approach for ranking of fuzzy numbers. Expert systems with applications39(1), 690-695.‏ https://doi.org/10.1016/j.eswa.2011.07.060
Ghasempoor Anaraki, M., Vladislav, D. S., Karbasian, M., Osintsev, N., & Nozick, V. (2021). Evaluation and selection of supplier in supply chain with fuzzy analytical network process approach. Journal of fuzzy extension and applications2(1), 69-88.‏ https://doi.org/10.22105/jfea.2021.274734.1078
Gitynavard, H., Mousavi, S. M., Vahdani, B. & Ghaderi, H. (2017). New decision-making method based on hesitant fuzzy preference index for contractor selection in construction industry. Industrial management studies, 45, 121-144. (In Persian). https://www.sid.ir/paper/213276/fa#downloadbottom
Huang, W., Zhang, F., & Xu, S. (2021). A complete ranking method for interval-valued intuitionistic fuzzy numbers and its applications to multicriteria decision making. Soft computing25(3), 2513-2520.‏ https://doi.org/10.1007/s00500-020-05324-6
Jahanshahloo, G. R., Lotfi, F. H., Shahverdi, R., Adabitabar, M., Rostamy-Malkhalifeh, M., & Sohraiee, S. (2009). Ranking DMUs by l1-norm with fuzzy data in DEA. Chaos, solitons & fractals39(5), 2294-2302.‏ https://doi.org/10.1016/j.chaos.2007.06.130
Khodadadi-Karimvand, M., & Shirouyehzad, H. (2021). Well drilling fuzzy risk assessment using fuzzy FMEA and fuzzy TOPSIS. Journal of fuzzy extension and applications2(2), 144-155.‏ https://doi.org/10.22105/jfea.2021.275955.1086
Lazar Farokhi, A. (2019). Application of fuzzy AHP and TOPSIS methods for risk evaluation of gas transmission facility. International journal of research in industrial engineering8(4), 339-365.‏ https://doi.org/10.22105/riej.2019.102689
Ma, M., Friedman, M., & Kandel, A. (1999). A new fuzzy arithmetic. Fuzzy sets and systems108(1), 83-90.‏ https://doi.org/10.1016/S0165-0114(97)00310-2
Mahmoudi, Sh., Nasiri, P., & Mohammadfam, I. (2016). Provide a madel for selecting contractors from perspective on HSE. Journal of occupational hygiene engineering (JOHE), 3(3), 9-15. (In Persian). https://www.sid.ir/fa/journal/ViewPaper.aspx?id=293281
Melliani, S., & Castillo, O. (2021). Recent advances in intuitionistic fuzzy logic systems and mathematics. Springer.
Mohan, S., Kannusamy, A. P., & Samiappan, V. (2020). A new approach for ranking of intuitionistic fuzzy numbers. Journal of fuzzy extension and applications1(1), 15-26.‏  https://doi.org/10.22105/jfea.2020.247301.1003
Park, D. G., Kwun, Y. C., Park, J. H., & Park, I. Y. (2009). Correlation coefficient of interval-valued intuitionistic fuzzy sets and its application to multiple attribute group decision making problems. Mathematical and computer modelling50(9-10), 1279-1293. ‏ https://doi.org/10.1016/j.mcm.2009.06.010
Rafiei, T., & Shiroviyezad, H. (2014). Identifying and ranking the main success factors of construction projects based on risk using QFD (case study in Sepahan Equipment Manufacturing Company) Mapna Group. The second national industrial engineering and sustainable management conference, Isfahan. Civilica. https://civilica.com/doc/322159/
Ranaei Koroshlooei, H., Alimohammadloo, M., Mirghaderi, S. H., & Amini, M. (2018). A framework for evaluating qualification and selecting contractor in the process of outsourcing the creation and maintenance of green space projects case study: Shiraz municipality. Journal of Iranian public administration studies1(1), 59-85. (In Persian). http://www.jipas.ir/article_69369.html
Rashid, T., Faizi, S., & Zafar, S. (2018). Distance based entropy measure of interval-valued intuitionistic fuzzy sets and its application in multicriteria decision making. Advances in fuzzy systems2018, 1-10. DOI: 10.1155/2018/3637897
Rashidi Komijan, A., & Masoudifar, A. (2021). A mathematical model for suppliers' evaluation and purchasing spare parts (a case study: Ferdowsi power plant, Mapna operation and repair company). Innovation management and operational strategies, 1(4), 383-402. (In Persian). DOI: 10.22105/IMOS.2021.271983.1030
Rasoulzadeh, M., & Fallah, M. (2020). An overview of portfolio optimization using fuzzy data envelopment analysis models. Journal of fuzzy extension and applications1(3), 180-188.‏ https://doi.org/10.22105/jfea.2020.255034.1027
Saneifard, R., Allahviranloo, T., Hosseinzadeh, F., & Mikaeilvand, N. (2007). Euclidean ranking DMUs with fuzzy data in DEA. Applied mathematical sciences60(1), 2989-2998.‏
Shu-Ping, W. (2012). Multi-attribute decision making method based on inter-valued trapezoidal intuitionistic fuzzy number. Control and decision27(3), 455-463.‏
Shureshjani, R. A., & Darehmiraki, M. (2013). A new parametric method for ranking fuzzy numbers. Indagationes mathematicae24(3), 518-529.‏ https://doi.org/10.1016/j.indag.2013.02.002
Valizadeh Plang Sarae, F. (2020). A new approach to supplier selection: interval ranking of DEA whit double frontiers. Innovation management and operational strategies, 1(1), 17-37. (In Persian).  https://doi.org/10.22105/imos.2020.262623.1016
Wan, S. P. (2013). Multi-attribute decision making method based on possibility variance coefficient of triangular intuitionistic fuzzy numbers. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems21(02), 223-243.
Wang, J. (2008). Overview on fuzzy multi-criteria decision-making approach. Control and decision23(6), 601-606.
Wang, J. Q., & Zhang, Z. (2009). Multi-criteria decision-making method with incomplete certain information based on intuitionistic fuzzy number. Control and decision24(2), 226-230.
Wei, G., Zhao, X., & Lin, R. (2013). Some hesitant interval-valued fuzzy aggregation operators and their applications to multiple attribute decision making. Knowledge-based systems46, 43-53.
Xu, Z. (2007). Methods for aggregating interval-valued intuitionistic fuzzy information and their application to decision making. Control and decision22(2), 215-219.
Ye, J. (2010). Fuzzy decision-making method based on the weighted correlation coefficient under intuitionistic fuzzy environment. European journal of operational research205(1), 202-204.‏ https://doi.org/10.1016/j.ejor.2010.01.019
Zadeh, L. A. (1965). Fuzzy sets. Information and control8(3), 338-353.
Zamani, S., Farughi, H., & Soolaki, M. (2013). Contractor selection using fuzzy hybrid AHP-VIKOR. International journal of research in industrial engineering, 2(4). 26-40. http://www.riejournal.com/article_47967.html
Zeng, W., Li, D., & Gu, Y. (2019). Note on the aggregation operators and ranking of hesitant interval-valued fuzzy elements. Soft computing23(17), 8075-8083.‏
Zhang, F., & Xu, S. (2017). Remarks to “fuzzy multicriteria decision making method based on the improved accuracy function for interval-valued intuitionistic fuzzy sets”. Soft computing21(9), 2263-2268.