نوع مقاله : مقاله پژوهشی


گروه مهندسی صنایع، دانشگاه یزد، یزد، ایران.



امروزه نقش و تاثیر رسانه در زندگی فردی و اجتماعی بر هیچ کس پوشیده نیست. در میان انبوه رسانه های امروزی، تلویزیون همچنان می تواند قدرتمند باشد به شرط آنکه مخاطب خود را بشناسد و مدیریتی نوین را در دستور کار خود قرار دهد. مدیریتی که منافع رسانه و مخاطب را یکی بداند. بدین منظور می توان با تحلیل توأم مخاطبان و برنامه ها به دنبال راهکارهایی برای افزایش نفوذ رسانه بود.

در این مقاله با نوآوری خوشه بندی توأم مخاطبان براساس ویژگی های دموگرافیک و مشخصات برنامه های تلویزیونی، برای افراد هر خوشه راهکارهایی به منظور افزایش نفوذ رسانه ارائه گردیده است. داده ها از پرسشنامه محقق ساخته و نمونه 390 نفری از کارشناسان موضوع و مردم شهر یزد به دست آمدند.

نتایج نشان می دهد که مدیران شبکه استانی یزد می بایست با توجه به خواسته های مطرح شده مخاطبان در زمان های اوج تماشا، در جدول پخش خود بازنگری کرده و راهکارهای ارائه شده این مقاله را در دستور کار قرار دهند. ارزیابی کیفیت خوشه بندی ساختارخوب آن را بیان می کند. راهکارهای ارائه شده نیز با نظر خبرگان حوزه رسانه و میزان انطباق نتایج با منابع مرتبط با موضوع تحقیق اعتبارسنجی شده است.

در این مقاله با تکنیک جدید خوشه بندی توأم مخاطبان براساس ویژگی های دموگرافیک و برنامه های تلویزیونی به صورت سلسله مراتبی و همزمان خوشه بندی شده اند و برای افراد هر خوشه راهکارهایی به منظور افزایش نفوذ رسانه ارائه گردیده است.



عنوان مقاله [English]

Joint clustering of programs and audiences with the aim of identifying and prioritizing solutions to increase media influence (Case study: Yazd Province TV)

نویسندگان [English]

  • hassan khademi zare
  • atena moghimi
  • mohammadsaleh owlia
  • Davood Shishebori

Department of Industrial Engineering, Yazd University, Yazd, Iran.

چکیده [English]

Nowadays, it is obvious that media has a dramatic role in people's lives. Among all types of media, TV can still be powerful if it tries to know its audience and uses creative management. A management that considers the interests of the media and the audience as one is effective.To achieve this goal, we should look for solutions to increase media influence by analyzing the audience and the programs together.

In this article, we used innovative joint clustering of audiences based on demographic characteristics and characteristics of television programs. Solutions are provided for members of each cluster in order to increase media influence. The data was obtained from a researcher-made questionnaire and a sample of 390 related experts and people of Yazd.

According to the demands of the audience during watching peaks, the managers of Yazd’s local TV channel have to review their broadcast schedule and use the solutions provided in this article on their agenda. Evaluating the quality of clustering shows its suitable structure. The proposed solutions have been validated according to the opinions of media experts and the degree of result’s compliance with the sources related to the research topic.

In this article, due to a new technique called joint clustering, the audience is clustered hierarchically and simultaneously based on demographic characteristics and television programs. in addition, the solutions are provided for members in each cluster to increase media influence.

کلیدواژه‌ها [English]

  • Media
  • audience
  • joint clustering. solutions to increase effect
  • Yazd Channel
Ahani Amineh, Z., Boorghani Farahani, S., Hassangholipoor Yasouri, T. & Tabatabaeian, S. H. (2019). Provide a model of the impact of national media on the rate of learning science and technology based on the views of national media managers and communication elites. Journal of training & learning researches, 16(1), 75-90. (In Persian). https://doi.org/10.22070/tlr.2019.3006
Alaviwafa, S. (2015). Evaluating and measuring the efficiency of TV networks and presenting improvement strategies. Communication research quarterly, 22(1), 103-127. (In Persian). DOI: 10.22082/CR.2015.15698
Bina, M. A., Soltani, M., & Gitizadeh, M. (2015). Study and modeling of two-stage clustering method in SPSS software. International conference on energy technology and management, Tehran, Iran. (In Persian). https://civilica.com/doc/460558
Boroujerdi Alavi, M., & Rahmati, M. M. (2021). Identifying indicators for evaluating the strategies of the radio and television organization in the field of message production and distribution. Scientific quarterly of culture studies– communication, 22(53), 31-70. (In Persian). https://doi.org/10.22083/jccs.2020.205970.2950
Caliński, T., & Harabasz, J. (1974). A dendrite method for cluster analysis. Communications in Statistics-theory and methods3(1), 1-27.
Farokhzadian, A. (2015). Methods for the numbers of clusters (Master Thesis, University of Yasouj). Retrieved from http://library.yu.ac.ir/
Farshad, H. (2016). Powerful media; in the hands of a professional audience. The second international media management conference, Tehran, Iran. Civilica. (In Persian). https://civilica.com/doc/439717
Ghiasi, F., Nezafati, N., & Shokohyar, S. (2015). Marine data users clustering using data mining technique, Iranian journal of information processing & management, 30(4), 1025-1049. (In Persian). http://jipm.irandoc.ac.ir/
Hassanzadeh, R., & Asghari, H. (2020). Identification and ranking of affecting factors on sales and operations planning (S&OP) process implementation by using fuzzy AHP and fuzzy TOPSIS approach (case study: dairy industry). Journal of applied research on industrial engineering7(1), 57-78. https://doi.org/10.22105/jarie.2020.222680.1142
Hedayati, T.S. (2020). The relationship between the factors affecting customer satisfaction for dairy products with path analysis (case study: golestan pegah company). Innovation management and operational strategies, 1(2), 126-139. (In Persian).  https://doi.org/10.22105/imos.2020.259964.1001
Kaveh, M., Saeida Ardakani, S., Shafiee, M., & Tabataba’i Nasab, S. (2020). Predicting and benchmarking the factors of customer attraction in insurance companies by the model of network data envelopment analysis and the theory of dynamics of bass publishing. Journal of decisions and operations research, 5(3), 382-40. (In Persian).  https://doi.org/10.22105/dmor.2020.237734.1188
Khashei, V., & Mirhaji, S.M. (2016). An introduction to television audience with the hybrid method of academic research. Communication research quarterly, 23(88), 99-123. (In Persian). https://doi.org/10.22082/cr.2017.24528
Khojasteh, M. (2015). Modeling the success factors of a TV channel in the effectiveness on the viewers and their satisfaction and loyalty using system dynamics (Master Thesis, University of Yazd). Retrieved from http://library.yazd.ac.ir/
Khoshbayan, A., &Salavatian, S. (2018). Development of desirable strategies for provincial television networks of the radio and television from the perspective of national   media   managers   and media experts.                                                            Media quarterly, 29(2), 9-30. (In Persian). http://qjmn.farhang.gov.ir/
Lewin, J., Rjamma, R.K., & Paswan, A.K. (2015). Customer loyalty entertainment venues: the reality TV genre. Journal of business research, 68(3), 616-622. https://doi.org/10.1016/j.jbusres.2014.08.010
Liou, D.K., Hsu, L.C., & Chih, W.H. (2015). Understanding broadband television users’ continuance intention to use. Industrial management & data systems, 115(2), 210-234. http://dx.doi.org/10.1108/IMDS-07-2014-0223
Löster, T. (2016). Determining the optimal number of clusters in cluster analysis. Proceedings of the 10th international days of statistics and economics (pp. 8-10). Prague, Czech Republic. https://msed.vse.cz/msed_2016/article/266-Loster-Tomas-paper.pdf 
Mahmudi, A., Mojibian, F., & NoorySabet, A. (2019). A mathematical model for supplier selection in supply chain considering inventory control and pricing problems. Journal of decisions and operations research, 4(1), 88-99. (In Persian). https://doi.org/10.22105/dmor.2019.89845
Majidi, H., & Ghanbari, R. (2012). Audience position in news policy. Media quarterly, 23(1), 67-92. (In Persian). http://qjmn.farhang.gov.ir/article_53387.html
Mirsaeedi, F., Koosha, H., & Ghodoosi, M. (2021). Comparison of data mining algorithms on educational data using multi-criteria decision-making methods. Journal of decisions and operations research, 6(1), 41-55. (In Persian). https://doi.org/10.22105/dmor.2021.239599.1182
Mohsenzadeh, M. J. (2017). The role of graphic communication in attracting the public relations audience of Baharestan city governorate. Media quarterly, 28(1), 63-79. (In Persian). https://journals.iau.ir/article_526470.html
Mooi, E., & Sarstedt, M. (2011).  A concise guide to market research (The process, data, and methods using IBM SPSS statistics). Springer. https://doi.org/10.1007/978-3-642-12541-6
Nazari, j., & Mokhtari, M. (2009). Factor analysis and its application in social sciences. Social science book monthly, 14, 20-33. (In Persian). https://www.magiran.com/paper/638361
Panahi, A. A. (2020). Influential elements in the efficiency of mass media and its immunity (with emphasis on moral and psychological teachings). Quarterly journal of extension in ethics, 10(37), 115-140. (In Persian). DOI: 10.22081/jare.2020.56709.1492
Radmehr, F., & Alamolhoda'i, S.H. (2014). Clustering: a tool for data analysis in quantitative and mixed studies. Methods and psychological models, 4(15), 13-36. (In Persian). https://www.sid.ir/paper/227455/fa
Trpkova Nestorovska, M., & Tevdovski, D. (2009). Twostep cluster analysis: segmentation of largest companies in Macedonia. International scientific conference: challenges for analysis of the economy, the businesses and social progress, Szeged (Hungary). Faculty of Economics and Business Administration, University of Szeged. https://repository.ukim.mk/handle/20.500.12188/2921
Vakili, M.M. (2010). Methods and tools of data collection in applied research. Zahedan journal of medical sciences, 12(4), 1-2. (In Persian). https://www.sid.ir/paper/359074/fa
Zhang, S., Wang, H., & Huang, W. (2017). Two-stage plant species recognition by local mean clustering and Weighted sparse representation classification. Cluster computing20(2), 1517-1525.