نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی مکانیک، دانشکده مهندسی، دانشگاه شهید چمران اهواز- پردیس صنعتی شهدای هویزه، سوسنگرد، ایران.

10.22105/dmor.2021.296432.1452

چکیده

هدف: تحلیل پوششی داده­ ها به‌عنوان یکی از زیرشاخه ­های کلیدی در برنامه ­ریزی ریاضی نقش برجسته ­ای در ارزیابی کارایی واحدهای تصمیم­ گیری در حوزه ­های گوناگون یافته است. حوادث مختلف کاری، به ما یادآوری می­ کند که به توسعه مدل‌های ایمنی در محیط کار توجه بیشتری داشته باشیم. اگرچه پارادایم ­های مختلف، رویکردهایی برای توصیف و توسعه روش­ های ایمنی و ارزیابی آن‌ها پیشنهاد کرده‌اند، اما با توجه به شرایط ناشی از ابهام در دنیای واقعی، نیاز به تکمیل و توسعه بیشتر برای گسترش ایمنی و ارزیابی آن‌ها در شرایط عدم قطعیت محسوس می­ باشد. در این میان، استفاده از اعداد فازی شهودی به علت در نظر گرفتن شاخص هایی همچون عضویت و عدم عضویت داده ­ها اهمیت ویژه ­ای دارد.
روش‌شناسی پژوهش: در این تحقیق، پس از تجزیه‌وتحلیل و پردازش اولیه، بر اساس مطالعات، ابتدا روش پارامتری و کارآمد برای رتبه بندی اعداد فازی شهودی مقدار انتخاب و مطرح می­ شود. درستی عملکرد روش انتخابی با توجه به فرمول­ بندی آن در ساختارهای خطی واضح می­باشد. مدل توسعه‌یافته تحلیل پوششی داده ­ها، فرمول­ بندی ریاضی آن در شرایط حاکم بر ساختار مدل و رویکرد اجرای آن بیان می­شود. مطالعه ­ای موردی برای تعیین عوامل موثر بر عملکرد ایمنی با استفاده از مدل آورده شده است. علاوه بر رتبه‌بندی واحدها، تحلیل حساسیت به‌منظور رتبه‌بندی شاخص ­های تعیین شده در ورودی­ ها و خروجی­ ها انجام می­ گیرد.
یافته ها: نتایج مدل تحلیل پوششی داده ­ها با داده­ های فازی شهودی نشان داد که با افزایش k، تعداد واحدهای کارا افزایش می ­یابد؛ از طرفی، کمترین و بیشترین کارایی به ترتیب متعلق به دیدگاه بدبینانه (k=0) و دیدگاه متعادل (k=0.5) می­باشد. همچنین تحلیل حساسیت نشان داد که دو عامل فشار کاری و میزان آسیب دیدگی­ ها (جسمی و روحی) به ترتیب، بیشترین و کمترین عوامل ایمنی تاثیرگذار بر نتایج کارایی هستند.
اصالت/ارزش افزوده علمی: استفاده از مدل تحلیل پوششی داده ­ها با داده­ های فازی شهودی برای ارزیابی عملکرد سایت‌های ساختمانی از بعد ایمنی، می­تواند به‌طور معناداری نتایج بهتری فراهم کند زیرا در دنیای واقعی، عدم قطعیت وجود دارد و داده ­های فازی شهودی، میزان عضویت و عدم عضویت را به‌طور هم‌زمان در نظر می­ گیرند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Structure of Data Envelopment Analysis with Intuitionistic Fuzzy Data (Case Study: Evaluation of Safety-Based Performance in Construction Projects)

نویسندگان [English]

  • Zeynab Latifi
  • Neda Pouyan

Department of Mechanical Engineering, Faculty of Engineering, Shohadaye Hoveizeh Campus of Technology, Shahid Chamran University of Ahvaz, Susangerd, Iran.

چکیده [English]

Purpose: Data Envelopment Analysis, one of the keys subfields in mathematical planning, has found a prominent role in evaluating the efficiency of decision making units in various fields.

Methodology: In this research, after analysis and initial processing, based on studies, a parametric and efficient method for ranking intuitionistic fuzzy numbers is selected and proposed. The correctness of the performance of the selected method is obvious due to its formulation in linear structures. The developed model of data envelopment analysis, its mathematical formulation by CCR and IO-BCC methods are expressed in terms of governing the model structure and its implementation approach. A case study is presented to determine the factors affecting safety performance using the model. Based on previous theoretical studies and opinions of experts in the field of safety, the most important influencing factors (work pressure and perception of the supervisors' safety as inputs) and (the rate of physical and mental injuries and unsafe accidents as outputs) were selected. In addition to ranking the units, sensitivity analysis was performed in CCR and IO-BCC methods to rank the specified indicators in the inputs and outputs, and the results have been compared.

Findings: The results of the data envelopment analysis model with intuitionistic fuzzy data showed that with increasing k, the number of efficient units increases. On the other hand, in CCR and IO-BCC methods, the lowest and highest efficiencies belong to the pessimistic view (k = 0) and the balanced view (k = 0.5), respectively. Sensitivity analysis also showed that, in CCR and IO-BCC methods, the work pressure is the most safety factor affecting the efficiency results.

Originality/Value: Using a Data Envelopment Analysis model with intuitionistic fuzzy data to evaluate the performance of construction sites from a safety perspective can provide significantly better results. Because in the real world, there is uncertainty, and intuitionistic fuzzy data, due to the concept of belonging, non-belonging, and suspicion in the view of decision-makers simultaneously and in data reporting, is of particular importance.

کلیدواژه‌ها [English]

  • Safety Dimensions
  • Construction Projects
  • Data Envelopment Analysis
  • IntuitionisticFuzzy Number Ranking
  • Intuitionistic Fuzzy Sets
Amininia, B. (2009). Investigation and analysis of accidents in the construction industry and in the whole country, registered with the social security organization in 1999. Second national conference on building safety, civil house, Tehran, Iran. Civilica. (In Persian). https://civilica.com/doc/93787/
Amirteimoori, A., & Kordrostami, S. (2010). A Euclidean distance-based measure of efficiency in data envelopment analysis. Optimization59(7), 985-996. https://doi.org/10.1080/02331930902878333
Ardeshir, A., Alipouri, Y., & Besmel, P. A. (2014). Survey of factors influencing safety performance of workers in construction sites using fuzzy analytic hierarchy process (case study: Khuzestan province). IOH, 11(6), 64-74. (In Persian). https://ioh.iums.ac.ir/article-1-1234-fa.html
Arya, A., & Yadav, S. P. (2019). Development of intuitionistic fuzzy data envelopment analysis models and intuitionistic fuzzy input–output targets. Soft computing23(18), 8975-8993. https://doi.org/10.1007/s00500-018-3504-3
Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy sets syst., 20(1), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3
Azadeh, A., & Kokabi, R. (2016). Z-number DEA: A new possibilistic DEA in the context of Z-numbers. Advanced engineering informatics30(3), 604-617. https://doi.org/10.1016/j.aei.2016.07.005
Azadeh, A., Saberi, M., Atashbar, N. Z., Chang, E., & Pazhoheshfar, P. (2013, July). Z-AHP: A Z-number extension of fuzzy analytical hierarchy process. In 2013 7th IEEE international conference on digital ecosystems and technologies (DEST) (pp. 141-147). IEEE. 10.1109/DEST.2013.6611344
Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management science30(9), 1078-1092. https://doi.org/10.1287/mnsc.30.9.1078
Brondino, M., Silva, S. A., & Pasini, M. (2012). Multilevel approach to organizational and group safety climate and safety performance: Co-workers as the missing link. Safety science50(9), 1847-1856. https://doi.org/10.1016/j.ssci.2012.04.010
Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European journal of operational research2(6), 429-444. https://doi.org/10.1016/0377-2217(78)90138-8
Chen, L., Gao, Y., Li, M. J., Wang, Y. M., & Liao, L. H. (2021). A new inverse data envelopment analysis approach to achieve China’s road transportation safety objectives. Safety science142, 105362. https://doi.org/10.1016/j.ssci.2021.105362
Chen, Y., McCabe, B., & Hyatt, D. (2017a). Impact of individual resilience and safety climate on safety performance and psychological stress of construction workers: A case study of the Ontario construction industry. Journal of safety research61, 167-176. https://doi.org/10.1016/j.jsr.2017.02.014
Chen, Y., McCabe, B., & Hyatt, D. (2017b). Relationship between individual resilience, interpersonal conflicts at work, and safety outcomes of construction workers. Journal of construction engineering and management143(8), 04017042. DOI: 10.1061/(ASCE)CO.1943-7862.0001338
Chutia, R., & Saikia, S. (2018). Ranking intuitionistic fuzzy numbers at levels of decision‐making and its application. Expert systems35(5), e12292. https://doi.org/10.1111/exsy.12292
Dotoli, M., Epicoco, N., Falagario, M., & Sciancalepore, F. (2015). A cross-efficiency fuzzy data envelopment analysis technique for performance evaluation of decision-making units under uncertainty. Comput. ind. eng., 79, 103–114. https://doi.org/10.1016/j.cie.2014.10.026
Ebrahimnejad, A., Tavana, M., Hosseinzadeh Lotfi, F., Shahverdi, R., & Yousefpour, M. (2014). A three-stage data envelopment analysis model with application to banking industry. Measurement, 49, 308–319. https://doi.org/10.1016/j.measurement.2013.11.043
Edalatpanah, S. A. (2020). Data envelopment analysis based on triangular neutrosophic numbers. CAAI transactions on intelligence technology5(2), 94-98. https://doi.org/10.1049/trit.2020.0016
El-Mashaleh, M. S., Rababeh, S. M., & Hyari, K. H. (2010). Utilizing data envelopment analysis to benchmark safety performance of construction contractors. International journal of project management28(1), 61-67. https://doi.org/10.1016/j.ijproman.2009.04.002
Emrouznejad, A., & Yang G. L. (2017). A survey and analysis of the first 40 years of scholarly literature in DEA: 1978-2016. Socio-economic planning sciences, 61, 4-8. http://dx.doi.org/10.1016/j.seps.2017.01.008
Emrouznejad, A., Tavana, M., & Hatami-Marbini, A. (2014). The state of the art in fuzzy data envelopment analysis, in performance measurement with fuzzy data envelopment analysis. Studies in fuzziness and soft computing, 309, 1-45. DOI: 10.1007/978-3-642-41372-8-1
Flin, R., Mearns, K., O'Connor, P., & Bryden, R. (2000). Measuring safety climate: identifying the common features. Saf. sci., 34(1-3), 177–192. https://doi.org/10.1016/S0925-7535(00)00012-6
Ganji, S. S., Rassafi, A., & Xu, D. L. (2019). A double frontier DEA cross efficiency method aggregated by evidential reasoning approach for measuring road safety performance. Measurement136, 668-688. https://doi.org/10.1016/j.measurement.2018.12.098
Hajiagha, S. H. R., Akrami, H., Zavadskas, E. K., & Hashemi, Sh. S. (2013). An introductionistic fuzzy data envelopment analysis for efficiency evaluation under uncertainty: case of a finance and credit institution. Ekonomie a management, 16(1), 128-137.
Hanifiyazdi, S., & Gholipour, Y. (2012). Study of body organ risk in construction accidents, 9th international congress of civil engineering, Isfahan, Iran. Civilica. (In Persian). https://civilica.com/doc/165638
Hermans, E., Brijs, T., Wets, G., & Vanhoof, K. (2009). Benchmarking road safety: Lessons to learn from a data envelopment analysis. Accident analysis & prevention41(1), 174-182. https://doi.org/10.1016/j.aap.2008.10.010
Jahani Sayyad Noveiri, M., Kordrostami, S., Wu, J., & Amirteimoori, A. (2019). Supply chains performance with undesirable factors and reverse flows: A DEA-based approach. Journal of the operational research society70(1), 125-135. https://doi.org/10.1080/01605682.2017.1421852
Jahanshahloo, G.R., Hosseinzadeh Lotfi, F., Shahverdi, R., Adabitabar, M., Rostamy-Malkhalifeh, M., & Sohraiee, S. (2009). Ranking DMUs by l1-norm with fuzzy data in DEA. Chaos, solitons & fractals, 39(5), 2294–2302. https://doi.org/10.1016/j.chaos.2007.06.130
Javaherian, N., Hamzehee, A., & Sayyadi Tooranloo, H. (2021). Designing an intuitionistic fuzzy network data envelopment analysis model for efficiency evaluation of decision-making units with two-stage structures. Advances in fuzzy systems2021. https://doi.org/10.1155/2021/8860634
Kao, C., & Liu, S. T. (2000). Fuzzy efficiency measures in data envelopment analysis. Fuzzy sets and systems113(3), 427-437. https://doi.org/10.1016/S0165-0114(98)00137-7
Keymanesh, M., & Hamami, M. (2013). Safety management of construction sites (first edition). Nedaye Karafarin Publications. Tehran. (In Persian). https://www.gisoom.com
Latifi, Z., & Shabanali Fami, H. (2020). Investigating the technical efficiency of date palm cultivation using the data envelopment analysis. International journal of agricultural management and development10(4), 383-399.  DOI: 20.1001.1.21595852.2020.10.4.5.6
Liu, J. S., Lu, L. Y. Y., Lu, W., & Lin, B. J. Y. (2013). A survey of DEA applications. Omega, 41(5), 893–902. https://doi.org/10.1016/j.omega.2012.11.004
Moheb-Alizadeh, H., Rasouli, S. M., & Tavakkoli-Moghaddam, R. (2011). The use of multi-criteria data envelopment analysis (MCDEA) for location–allocation problems in a fuzzy environment. Expert systems with applications38(5), 5687-5695. https://doi.org/10.1016/j.eswa.2010.10.065
Monzeli, A., Daneshian, B., Tohidi, G., Sanaei, M., & Razaveian, S. (2020). Efficiency study with undesirable inputs and outputs in DEA. Journal of fuzzy extension and applications, 1(1), 76-84.
Nabizadeh, F., & Zahedi, R. (2016). Analysis of factors affecting accidents in Iranian construction workshops; case study: Abbasabad city. National conference on health, safety and environment in the construction industry, Tehran, Iran. (In Persian). https://elmnet.ir/article
Nahangi, M., Chen, Y., & McCabe, B. (2019). Safety-based efficiency evaluation of construction sites using data envelopment analysis (DEA). Safety science113, 382-388. https://doi.org/10.1016/j.ssci.2018.12.005
Najafi, E., Aryanejad, M., Hosseinzadeh Lotfi, F., & Ebnerasoul, A. (2009). Performance evaluation accounting with inputs non-discretionary factors in an integrated BSC-DEA methodology. Future study management, 20(82), 161-161. (In Persian). https://jmfr.srbiau.ac.ir/article_5066.html?lang=en
Omrani, H., Amini, M., & Alizadeh, A. (2020). An integrated group best-worst method–data envelopment analysis approach for evaluating road safety: a case of Iran. Measurement152, 107330. https://doi.org/10.1016/j.measurement.2019.107330
Puri, J., & Yadav, S. P. (2015). Intuitionistic fuzzy data envelopment analysis: an application to the banking sector in India. Expert systems with applications42(11), 4982-4998. https://doi.org/10.1016/j.eswa.2015.02.014
Rahnavard, M., GJasemi, S., & Ebrahimi, M. H. (2016). Investigation of construction accidents and factors affecting it, case study: Kazerun city. Fourth international congress of civil engineering, architecture and urban development, Tehran, Iran. (In Persian). https://elmnet.ir/article
Saneifard, R., Allahviranloo, T., Hosseinzadeh Lotfi, F., & Mikaeilvand, N. (2007). Euclidean ranking DMUs with fuzzy data in DEA. Applied mathematical sciences, 1(60), 2989-2998.
Sebt, M. V., Juybari, M. N., & Soleymanfar, V. R. (2018). Investment projects ranking with DEA method considering feasibility study results. International journal of research in industrial engineering7(3), 320-335. https://doi.org/10.22105/riej.2018.147016.1058
Shakouri, B., Abbasi Shureshjani, R., Daneshian, B., & Hosseinzadeh Lotfi, F. (2020). A parametric method for ranking intuitionistic fuzzy numbers and its application to solve intuitionistic fuzzy network data envelopment analysis models. Complexity2020.  https://doi.org/10.1155/2020/6408613
Tavana, M., Nazari-Shirkouhi, S., & Farzaneh Kholghabad, H. (2021). An integrated quality and resilience engineering framework in healthcare with Z-number data envelopment analysis. Health care management science24(4), 768-785. https://doi.org/10.1007/s10729-021-09550-8
Toloo, M., Emrouznejad, A., & Moreno, P. (2017). A linear relational DEA model to evaluate two-stage processes with shared inputs. Computational and applied mathematics36(1), 45-61. https://doi.org/10.1007/s40314-014-0211-2
Wang, J. (2008). Overview on fuzzy multi-criteria decision-making approach. Control and decision23(6), 601-606.
Wang, X., & Kerre, E. E. (2001). Reasonable properties for the ordering of fuzzy quantities (I). Fuzzy sets and systems118(3), 375-385. https://doi.org/10.1016/S0165-0114(99)00062-7
Yazdanparast, R., Tavakkoli-Moghaddam, R., Heidari, R., & Aliabadi, L. (2021). A hybrid Z-number data envelopment analysis and neural network for assessment of supply chain resilience: a case study. Central European journal of operations research29(2), 611-631. https://doi.org/10.1007/s10100-018-0596-x
Zadeh, L. A. (1965). Fuzzy sets. Inform control8(3), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X
Zadeh, L. A. (2011). A note on z-numbers. Information sciences181(14), 2923-2932.
Zou, Y., He, Y., Lin, W., & Fang, S. (2021). China’s regional public safety efficiency: a data envelopment analysis approach. The annals of regional science66(2), 409-438. https://doi.org/10.1007/s00168-020-01025-y