نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه ریاضی کاربردی، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران.

2 گروه ریاضی کاربردی، واحد لاهیجان، دانشگاه آزاد اسلامی، لاهیجان، ایران.

3 گروه ریاضی، دانشکده علوم پایه، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.

چکیده

هدف:  در مسائل تخصیص منابع و هدف گذاری دیدگاه مدیریتی برنامه ریز مرکزی در تصمیم‌گیری‌های مدیریتی نقشی اساسی دارد، به خصوص هنگامی که با خروجی های نامطلوب مانند انتشار گازهای گلخانه‌ای مواجه می­شویم. در این شرایط واحدها باید با همکاری یکدیگر در جهت دستیابی به اهداف برنامه ریز مرکزی گام بردارند. از آنجا که در اکثر مدل های تخصیص منابع مبتنی بر تحلیل پوششی داده‌ها تلاش مدیریتی و نوآوری تکنولوژیکی نادیده گرفته می­شود، در این مقاله رویکردی از تخصیص منابع و هدف گذاری مبتنی بر تحلیل پوششی داده‌ها ارائه می شود که در آن فرض دسترسی پذیری مدیریتی انعکاس چشم انداز موفقیت مدیریتی برنامه ریز مرکزی و دور نمای نوآوری تکنولوژیکی در روند تخصیص منابع و تعیین هدف است.
 روش‌شناسی پژوهش: استفاده از  فرض دسترسی پذیری  مدیریتی در این مقاله راهکاری برای تخصیص منابع و هدف گذاری درست و قابل قبول به همراه بهبود عملکرد واحدها به طور هم زمان ارائه می­دهد. برای تحلیل روش ارائه شده در این مقاله داده های 29 خط هواپیمایی بین­الملی مشهور که نماینده صنعت هوانوردی جهانی می باشند، انتخاب شده و مورد مطالعه قرار گرفته است.




یافته‎ها: یافته‌های این پژوهش نشان می دهد در این مدل واحدهای تصمیم گیرنده  از دسترسی پذیری مدیریتی در تنظیم تطبیق‌ها بر روی خروجی های نامطلوب بر اساس چشم انداز استراتژی‌های همکاری واحدها  در راستای  بهبود عملکرد زیست محیطی خود استفاده می‌کند. در این رویکرد علاوه بر افزایش ورودی‌ها، ثابت ماندن مقدار خروجی‌های مطلوب، به خروجی‌های نامطلوب اجازه کاهش داده می­شود. در واقع این مدل تضمین می‌کند که واحدهای تصمیم گیرنده تطبیق شده بعد از تخصیص منابع و هدف گذاری، در دوره بعدی، از بهبود کارآیی برخوردار شوند و همچنین بهبود کارایی کل در نتایج بدست آمده توسط این رویکرد، مشاهده می­شود.
اصالت/ارزش افزوده علمی: در این مقاله با استفاده از فرض دسترسی پذیری مدیریتی  رویکرد جدیدی از تخصیص منابع و هدف گذاری مبتنی بر تحلیل پوششی داده‌ها ارائه می شود که تأثیر تلاش مدیریتی و نوآوری فناوری را در مسئله تخصیص منابع و هدف گذاری در نظر می­گیرد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Resource allocation and target setting based on DEA with managerial disposability: evaluation and optimization the greenhouse gas emissions reduction in international airlines

نویسندگان [English]

  • Hengameh Mohamadinejadrashti 1
  • Alireza Amirteimoori 1
  • Sohrab Kordrostami 2
  • Farhad Hosseinzadeh Lotfi 3

1 Department of Applied Mathematics, Rasht Branch, Islamic Azad University, Rasht, Iran.

2 Department of Applied Mathematics, Lahidjan Branch, Islamic Azad University, Lahidjan, Iran.

3 Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran.

چکیده [English]

Purpose: In resource allocation and target setting problems, a central planner decision making from a managerial point of view has a pivotal role, especially in presence of undesirable outputs such as greenhouse gas emissions. In these situations, firms have to incorporate to each other to achieve the goals of the central planner. The existing DEA-based resource allocation models have not considered the influence of managerial effort and technology innovation. In this study, we will use the managerial disposability assumption to reflect the central planner managerial achievement and technology novelty perspective in the process of resource allocation and target setting.
Methodology: Using a managerial disposability assumption in this paper offers a solution to a correct and acceptable resource allocation and target setting along with improving the performance of units. To analyze the method presented in this paper, the data of 29 famous international airlines representing the global aviation industry have been selected and studied.
Findings: The results of this study show that in this model, decision-making units use managerial disposability assumption in the regulation of undesirable outputs based on the perspective of cooperation strategies to improve their environmental performance. In addition, in this approach increasing the inputs, fixing the amount of the desirable outputs, reducing the amount of undesirable outputs will be allowed. This model ensures that the adjusted decision-making units in the next period, will improve their efficiency after resource allocation and target setting, as well as improving the overall efficiency is observed in the results obtained by this method.




Originality/Value: The paper presents a new approach of resource allocation and target setting based on data envelopment analysis which considers the impact of managerial effort and technology innovation on resource allocation and target setting problems.

کلیدواژه‌ها [English]

  • Data Envelopment Analysis
  • Resource Allocation
  • Target Setting
  • Managerial disposability assumption
Aliheidari Bioki, T., & Khademi Zare, H. (2014). Adaptive DEA for clustering of credit clients. Journal of applied research on industrial engineering, 1(1), 35-49.
Amirteimoori, A. (2007). DEA efficiency analysis: Efficient and anti-efficient frontier. Applied mathematics and computation, 186(1), 10-16. https://doi.org/10.1016/j.amc.2006.07.006
Amirteimoori, A., & Shafiei, M. (2006). Characterizing an equitable omission of shared resources: a DEA-based approach. Applied mathematics & computation, 177 (1), 18–23. https://doi.org/10.1016/j.amc.2005.10.031
Amirteimoori, A., Masrouri, S., Yang, F., & Kordrostami, S. (2017). Context-based competition strategy & performance analysis with fixed-sum outputs: An application to banking sector. The operational research society, 11, 1461-1469. https://doi.org/10.1057/s41274-017-0180-0
 Amirteimoori, A., & Mohaghegh Tabar, M. (2010). Resource allocation & target setting in data envelopment analysis. Expert systems with applications, 37, 3036–3039. https://doi.org/10.1016/j.eswa.2009.09.029
Asmild, M., Paradi, J. C., & Pastor, J. T. (2009). Centralized resource allocation BCC models. Omega, 37(1), 40–49. https://doi.org/10.1016/j.Omega.2006.07.006
Beasley, J. E. (2003). Allocating fixed costs & resources via data envelopment analysis. European journal of operational research, 147 (1), 198-216. https://doi.org/10.1016/S0377-2217(02)00244-8
Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European journal of operational research, 2, 429–444. https://doi.org/10.1016/0377-2217 (78)90138-8
Cui, Q., & Li, Y. (2017) Airline efficiency measures under CNG2020 strategy: an application of a dynamic by-production model. Transportation research part A: policy & practice, 106, 130–43. https://doi.org/10.1016/j.tra.2017.09.006
Ebrahimzadeh Shermeh, H., Alavidoost, M., & Darvishinia, R. (2018). Evaluating the efficiency of power companies using data envelopment analysis based on SBM models: a case study in power industry of Iran. Journal of applied research on industrial engineering, 5(4), 286-295. https://doi.10.22105/jarie.2018.81051
Emrouznejad, A., Yang, G. L., Amin, G. R. (2019). A novel inverse DEA model with application to allocate the CO2 emissions quota to different regions in Chinese manufacturing industries. Journal of the operational research society. 70 (7), 1079–1090. https://doi.org/ 10.1080/01605682.2018.1489344
Fang, L. (2015). Centralized resource allocation based on efficiency analysis for step-by-step improvement paths. Omega, 51, 24–28. https://doi.org/10.1016/j.omega.2014.09.003
Färe, R., Grosskopf, S., Lovell, C. A. K. & Pasurka, C. (1989). Multilateral productivity comparisons when some outputs are undesirable: a nonparametric approach. The review of economics & statistics, 71, 90–98. https://doi.org/10.2307/1928055
 Färe, R., & Grosskopf, S. (2004). Modeling undesirable factors in efficiency evaluation: comment, European Journal of operational research, 157 (1), 242–245. https://doi.org/10.1016/S0377-2217(03)00191-7
Ghasemi, S., Aghsami, A., & Rabbani, M. (2021). Data envelopment analysis for estimate efficiency and ranking operating rooms: a case study. International journal of research in industrial engineering. https:// doi: 10.22105/riej.2021.247705.1143
Golany, B., & Tamir, E. (1995). Evaluating efficiency-effectiveness-equality trade-offs: a data envelopment analysis approach. Management science, 41 (4), 1172–1184. https://doi.org/10.1287/mnsc.41.7.1172
 Hailu, A., & Veeman, T. S. (2001). Nonparametric productivity analysis with undesirable outputs: an application to the canadian pulp & paper industry. American journal of agricultural economics, 83, 605-616. https://doi.org/10.1016/S0169-5150(01)00078-0
Hailu, A. (2003). Nonparametric productivity analysis with undesirable outputs: reply. American journal of agricultural economics, 85(4), 1075-1077.
Korhonen, P. & Syrjanen, M. (2004). Resource allocation based on efficiency analysis. Management science, 50, 1134–1144. https://doi.org/10.1287/mnsc.1040.0244
Kuosmanen, T. (2005). Weak disposability in nonparametric production analysis with undesirable outputs. American journal of agricultural economics, 87(4), 1077-1082. https://www.jstor.org/stable/3697791
 Kuosmanen, T., & Poidinovski, V., (2009). Weak disposability in nonparametric productivity analysis with undesirable outputs: reply to Fare & Grosskopf. American journal of agricultural economics, 91(2), 539-54. 510.http://doi.1111/j.1467-8276.2008.01238
Kuosmanen, T., & Matin, R. K. (2011). Duality of weakly disposable technology. Omega, 39, 504–512. https://doi.org/10.1016/j.omega.2010.10.008
Li, H., Yang, W., Zhou, Z., & Huang, C.H. (2013). Resource allocation models’ construction for the reduction of undesirable outputs based on DEA methods. Mathematical & computer modelling, 58, 913–926. https://doi.org/10.1016/j.mcm.2012.10.026
Li, Y., Wang, Y., & Cui, Q. (2015). Evaluating airline efficiency: an application of virtual frontier network SBM. Transportation research part E, 8, 1–17. https://doi.org/10.1016/j.tre.2015.06.006
Lotfi, F. H., Hatami-Marbini, A., Agrell, P. J., Aghayi, N., & Gholami, K. (2013). Allocating fixed resources & setting targets using a common-weights DEA approach. Computers & industrial engineering, 64 (2), 631–640. https://doi.org/10.1016/j.cie.2012.12.006
Lozano, S., & Guti´errez, E. (2014). A slacks-based network DEA efficiency analysis of European airlines. Transport plann technol, 37(7), 623–37. https://doi.org/10.1080/03081060.2014.935569
Lozano, S., & Villa, G. (2004). Centralized resource allocation using data envelopment analysis. Journal of productivity analysis, 22(1-2), 143-161. https://doi.org/10.1023/B:PROD.0000034748.22820.33
Lozano, S., Villa, G., & Brännlund, R. (2009). Centralized reallocation of emission permits using DEA. European journal of operational research, 193 (3), 752–760. https://doi.org/10.1016/j.ejor.2007.07.029
Mohamadinejad, H., Amirteimoori, A., Lotfi, F.H., & Kordrostami, S. (2020). Performance & competition analysis with fixed-sum measures: A case on OPEC members. Journal of information & optimization sciences, 1-19. https://doi.org/10.1080/02522667.2020.1769265
Monzeli, A., Daneshian, B., Tohidi, G., Sanei, M., Razavian, S. (2020). Efficiency study with undesirable inputs and outputs in DEA. Journal of fuzzy extension and applications, 1(1), 78-84. http://doi:10.22105/jfea.2020.248018.1005
Nemati, M., & Matin, R. K. (2019). A data envelopment analysis approach for resource allocation with undesirable outputs: an application to home appliance production companies. Sādhanā, 44, 11. https://doi.org/10.1007/s12046-018-0993-9
Olesen, O. B., Petersen, N. Ch, & Podinovski, V. (2015).Efficiency analysis with ratio measures. European journal of operational research, 245(2), 446-462.https://doi.org/10.1016/j.ejor.2015.03.013
Qin, Q., Li, X., & He, H. (2018). Unified energy efficiency in China’s coastal areas: a virtual
frontier-based global bounded adjusted measure. Journal of cleaner production, 186, 229–40. https://doi.org/10.1016/j.jclepro.2018.03.125
Seiford, L. M., & Zhu, J. (2002). Modeling undesirable factors in efficiency evaluation. European journal of operational research, 142, 16–20. https://doi.org/10.1016/S0377-2217(01)00293-4
Shephard, R. W. (1970). Theory of cost & production functions. Princeton: Princeton University Press.
Sueyoshi, T., & Goto, M. (2012a). Returns to scale & damages to scale under natural & managerial disposability: strategy, efficiency & competitiveness of petroleum firms. Energy economics, 34(3), 645-662. https://doi.org/10.1016/j.eneco.2011.07.003
Sueyoshi, T., & Goto, M. (2012b).Weak and strong disposability vs. natural and managerial disposability in DEA environmental assessment: Comparison between Japanese electric power industry and manufacturing industries. Energy economics, 34(3), 686-699. https://doi.org/10.1016/j.eneco.2011.10.018
Sueyoshi, T., & Goto, M. (2012c). DEA radial and non-radial models for unified efficiency under natural and managerial disposability: Theoretical extension by strong complementary slackness conditions. Energy economics, 34(3), 700-713. https://doi.org/10.1016/j.eneco.2011.12.013
Sueyoshi, T., Goto, M., & Snell, M. A. (2013). DEA environmental assessment: Measurement of damages to scale with unified efficiency under managerial disposability or environmental efficiency. Applied mathematical & modeling, 37(12), 7300-7314. https://doi.org/10.1016/j.apm.2013.02.027
Sueyoshi, T., Liu, X., & Li, A. (2020). Evaluating the performance of Chinese fossil fuel power plants by data environment analysis: An application of three intermediate approaches in a time horizon. Journal of cleaner production. 277, 121992. https://doi.org/10.1016/j.jclepro.2020.121992
Tohidi, G., Taherzadeh, H., & Hajiha, S. (2014). Undesirable outputs’ presence in centralized resource allocation model. Mathematical problems in engineering. https://doi.org/10.1155/2014/675895
Wang, K., Wei, Y.M., & Huang, Z. (2016). Potential gains from carbon emissions trading in China: a DEA based estimation on abatement cost savings. Omega, 63, 48–59. https://doi.org/10.1016/j.omega.2015.09.011
Wu, J., Li, M., Zhu, Q., & Liang, L. (2019). Energy & environmental efficiency measurement of
China’s industrial sectors: a DEA model with non-homogeneous inputs & outputs.
Energy economics, 78, 468–80. https://doi.org/10.1016/j.eneco.2018.11.036
Yan, H., Wei, Q.L., & Hao, G. (2002). DEA models for resource reallocation & production input/output estimation. European journal of operational research, 136(1), 19–31. https://doi.org/10.1016/S0377-2217(01)00046-7