نوع مقاله: مقاله پژوهشی
نویسنده
گروه حسابداری، واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران، ایران.
چکیده
کلیدواژهها
موضوعات
عنوان مقاله [English]
نویسنده [English]
Financial distress analysis is an essential phenomenon for financiers, creditors and those who use financial data. Predicting the possibility of a company’s distress is an interesting issue and is beneficial for managers, investors and creditors. This study localizes a method to identify the distressed companies in three levels, using the data of 1488 company from 1390 to 1395 and finally the financial distress for the next year and two years later is predicted by means of macroeconomic and accounting variable in the capital market of Iran by means of Matlab 2017, using the artificial intelligence algorithm of Gaussian kernel backup vector machine and Chide rule-oriented algorithm. One of the innovations of this study about the localization of the distress model in Iran using the worldwide and Iranian model together is using macroeconomic and accounting variables and artificial intelligence methods in three levels. The results of this study show that the non-linear algorithm for vector machine supporting the Gaussian kernel has more ability to predict the distress of companies, compared to the Chide rule-oriented algorithm.
Key words: Financial Bankruptcy, artificial intelligence, Macro-economic and Accounting variables.
JEL: C53،A12،B26،G33،M41
کلیدواژهها [English]
احمدی، س. ش. (1395). بررسی رابطه بین حاکمیت شرکتی و ریسک سیستماتیک با درماندگی مالی شرکتهای پذیرفتهشده در بورس اوراق بهادار تهران ( پایاننامه کارشناسی ارشد).
آهنگری، م. (1390). بهکارگیری الگوریتم درخت تصمیم جهت پیشبینی شرکتهای ورشکسته و غیر ورشکسته پذیرفتهشده در بورس اوراق بهادار تهران. اولین کنفرانس ملی دانشپژوهان کامپیوتر و فناوری اطلاعات. تبریز، دانشگاه تبریز.
پورحیدری، ا؛ کوپائیحاجی، م. (1389). پیشبینی بحران مالی با استفاده از مدل مبتنی بر تابع تفکیکی خطی. پژوهش حسابداری مالی، 1(3)، 33-46.
پیام، م. ا. (1391). بررسی تأثیر متغیرهای کلان اقتصادی بر ریسک ورشکستگی شرکتهای پذیرفتهشده در بورس اوراق بهادار تهران ( پایاننامه کارشناسی ارشد، دانشگاه شیراز - دانشکده اقتصاد و علوم اجتماعی).
پیرایش، ر؛ داداشی آرانی، ح ؛ برزگر، م. ر. (1396). ارائه مدل ریاضی پیشبینی ورشکستگی شرکتهای پذیرفتهشده در بورس اوراق بهادار تهران. تحقیقات حسابداری و حسابرسی، 8(31)، 187-200.
تقوی، م؛ پورعلی، م. ر. (1389). بررسی و تحلیل نسبتهای مالی در تشخیص سطوح مختلف سلامت مالی واحدهای تولیدی ایران. مطالعات مالی، 8، 23-59.
راعی، ر؛ فلاحپور، س. (1387). کاربرد ماشین بردار پشتیبان در پیشبینی درماندگی مالی شرکتها با استفاده از نسبتهای مالی. بررسیهای حسابداری و حسابرسی، 15(53)، 17-34.
راموز، ن؛ محمودی، م. (1396). پیشبینی ریسک ورشکستگی مالی با استفاده از مدل ترکیبی در بورس اوراق بهادار تهران. راهبرد مدیریت مالی، 5(16)، 51-75.
رحیمیان، ن؛ توکلنیا، ا. (1392). اهرم مالی و ارتباط آن با درماندگی مالی و فرصتهای رشد در شرکتهای پذیرفتهشده در بورس اوراق بهادار تهران (روابط خطی و انحنایی). فصلنامه حسابداری مالی، 5(20)، ۱۰۸-۱۲۹.
ستایش، م. ح؛ منصوری، ش. (1393). بررسی مقایسهای سازوکارهای حاکمیت شرکتی در شرکتهای درمانده و غیر درمانده مالی پذیرفتهشده در بورس اوراق بهادار تهران. تحقیقات مالی حسابداری، 16(1)، 99-112.
سعیدی، ع؛ آقایی، آ. (1388). مروری بر روشها و مدلهای پیشبینی ورشکستگی. دانش و پژوهش حسابداری، 16(3)، 59-78.
سلیمانی، ا؛ معماریان، ش. (1391). رابطه سود اقتصادی و سود حسابداری با حقوق صاحبان سهام در شرکتهای برتر پذیرفتهشده در بازار سرمایه تهران. مجله اقتصادی – دوماهنامه بررسی مسائل و سیاستهای اقتصادی، 7(8)، 75-92.
صادقی، ح؛ رحیمی، پ؛ سلمانی، ی. (1392). تأثیر عوامل کلان اقتصادی و نظام راهبری درماندگی بر مالی شرکت تولیدیهای پذیرفتهشده در بورس اوراق بهادار تهران. دو فصلنامه اقتصاد پولی، مالی (دانش و توسعه سابق)، 21(8)، 107-127.
طارمی، ک. (1393). بررسی تأثیر متغیرهای کلان اقتصادی بر درماندگی مالی شرکتهای بورس اوراق بهادار تهران. مورد مطالعه شرکتهای صنایع دارویی ( پایاننامه کارشناسی ارشد مدیریت، دانشگاه آزاد اسلامی واحد ابهر).
طالبنیا، ق؛ شجاع، ا. (1390). رابطه بین نسبت ارزش افزوده بازار (MVA) به سود حسابداری و نسبت ارزش افزوده اقتصادی (EVA) به سود حسابداری در شرکتهای پذیرفتهشده. فصلنامه حسابداری مدیریت، 4(8)، 47-60.
طالبنیا، ق؛ جهانشاد، آ؛ پورزمانی، ز. (1388). ارزیابی کارایی متغیرهای مالی و متغیرهای اقتصادی در پیشبینی بحران مالی شرکتها مورد مطالعه شرکتهای پذیرفته در بورس اوراق بهادار تهران. بررسیهای حسابداری و حسابرسی، 16(55)، 67-84.
فدایینژاد، م. ا؛ شهریاری، س؛ سلیم، ف. (1394). تجزیهوتحلیل رابطهی ریسک درماندگی مالی و بازده سهام. بررسیهای حسابداری و حسابرسی، 22(2)، 243-262.
فدایینژاد، م. ا؛ شهریاری، س؛ سلیم، ف. (1394). معمای رابطه ریسک درماندگی مالی با بازده سهام- بهادار تهران. فصلنامه علمی- پژوهشی مالی مدیریت دارایی و تأمین مالی، 3(2)، 33-54.
فروغی، د؛ مظاهری، م. (1392). بررسی تأثیر اهرم و ریسک درماندگی مالی بر بازده واقعی سهام شرکتهای پذیرفتهشده در بورس اوراق بهادار تهران. فصلنامه حسابداری مالی، ۵ (۱۸)، ۴۶-۶۱.
قدرتی، ح؛ معنویمقدم، ا. (1389). بررسی دقت مدلهای پیشبینی ورشکستگی (آلتمن، شیراتا، اهلسون، زمیسکی، اسپرینگیت، سیای اسکور، فولمر، ژنتیک فرج زاده و ژنتیک مک کی) در بورس اوراق بهادار تهران. تحقیقات حسابداری، 2(7)، 128-144.
قسیم عثمانی، م؛ جاوید، د؛ رحیمی، س. (1390). بررسی تأثیر بازدارندگی مکانیزمهای حاکمیت شرکتی از درماندگی مالی شرکتهای پذیرفتهشده در بورس اوراق بهادار تهران. تحقیقات حسابداری و حسابرسی، 12، 1-19.
کمیجانی، ا؛ و سعادتفر، ج. (1385). کاربرد مدلهای شبکه عصبی در پیشبینی ورشکستگی اقتصادی شرکتهای بازار بورس. جستارهای اقتصادی، 3(6)، 11-44.
مشایخی، ب؛ گنجی، ح. ر. (1393). تأثیر کیفیت سود بر پیشبینی ورشکستگی با استفاده از شبکه عصبی مصنوعی. تحقیقات حسابداری مالی و حسابرسی، 6(6)، 147-173.
مشکی میاوقی، م؛ هاشمی سعادت، م. (1394). بررسی رابطه حاکمیت شرکتی با احتمال وقوع ورشکستگی در شرکتهای پذیرفتهشده در بورس اوراق بهادار تهران. پژوهشهای حسابداری، 5(1)، 37-58.
ملایی، ع؛ خزدوزی، ب. (1394). تأثیر سطح نقدینگی بر ریسک درماندگی مالی شرکتهای پذیرفتهشده در بورس اوراق بهادار تهران. فصلنامه مدیریت صنعتی دانشکده علوم انسانی، دانشگاه آزاد اسلامی، واحد سنندج، 10(34)،81-88.
Alcock, J., Finn, F., & Tan, K. J. K. (2012). The determinants of debt maturity in Australian firms. Accounting & finance, 52(2), 313-341.
Altman, E. I. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. The journal of finance, 23(4), 589-609.
Bredart, X. (2014). Financial distress and corporate governance around Lehman brothers Bankruptcy. International business research, 7(5), 1-8.
Brewer, B. E., Wilson, C. A., Featherstone, A. M., Harris, J. M., Erickson, K., & Hallahan, C. (2012). Measuring the financial health of US production agriculture. Journal of ASFMRA, 178-193.
Campbell, J. Y., Hilscher, J., & Szilagyi, J. (2008). In search of distress risk. The journal of finance, 63(6), 2899-2939.
Chang, C. (2009). The corporate governance characteristics of financially distressed firms: Evidence from Taiwan. Journal of American academy of business, 15(1), 125-132.
Chen, M. Y. (2011). Predicting corporate financial distress based on integration of decision tree classification and logistic regression. Expert systems with applications, 38(9), 11261-11272.
Garcia-Appendini, E. (2017). Financial distress and corporate investment. Review of economics and statistics, 78(1), 1-15.
Fich, E. M., & Slezak, S. L. (2008). Can corporate governance save distressed firms from bankruptcy? An empirical analysis. Review of quantitative finance and accounting, 30(2), 225-251.
Hu, H., & Sathye, M. (2015). Predicting financial distress in the Hong Kong growth enterprises market from the perspective of financial sustainability. Sustainability, 7(2), 1186-1200.
Tinoco, M. H., & Wilson, N. (2013). Financial distress and bankruptcy prediction among listed companies using accounting, market and macroeconomic variables. International review of financial analysis, 30, 394-419.
Kritsonis, A. (2005). Assessing a firm’s future financial health. International journal of scholarey academic interlectual diversity, 9(1), 2004-2005.
Kim, C. S., Mauer, D. C., & Sherman, A. E. (1998). The determinants of corporate liquidity: Theory and evidence. Journal of financial and quantitative analysis, 33(3), 335-359.
Li, Z., Crook, J. N., & Andreeva, G. (2015). Corporate governance and financial distress: a discrete time hazard prediction model. Retrieved Augost 01, 2019 from http://ssrn.com/abstract=2635763
McEnally, R. W., & Todd, R. B. (1993). Systematic risk behavior of financially distressed firms. Quarterly journal of business and economics, 3-19.
Rafiei, F. M., Manzari, S. M., & Bostanian, S. (2011). Financial health prediction models using artificial neural networks, genetic algorithm and multivariate discriminant analysis: Iranian evidence. Expert Systems with Applications, 38(8), 10210-10217.
Outecheva, N. (2007). Corporate financial distress: An empirical analysis of distress risk (Doctoral dissertation, Verlag nicht ermittelbar).
Odom, M. D., & Sharda, R. (1990, June). A neural network model for bankruptcy prediction. In 1990 IJCNN international joint conference on neural networks (pp. 163-168). IEEE.
Ozkan, A., & Ozkan, N. (2004). Corporate cash holdings: an empirical investigation of UK companies. Journal of banking & finance, 28(9), 2103-2134.
Pindado, J., Rodrigues, L., & de la Torre, C. (2008). Estimating financial distress likelihood. Journal of business research, 61(9), 995-1003.
Gao, P., Parsons, C. A., & Shen, J. (2017). Global relation between financial distress and equity returns. The review of financial studies, 31(1), 239-277.
Robinson, D., Robinson, M., & Sisneros, C. (2012). Bankruptcy outcomes: Does the board matter?. Advances in accounting, 28(2), 270-278.
Sayari, N., & Mugan, C. S. (2017). Industry specific financial distress modeling. BRQ business research quarterly, 20(1), 45-62.
Shimizu, K. (2012). Bankruptcies of small firms and lending relationship. Journal of banking & finance, 36(3), 857-870.
Aharony, J., Jones, C. P., & Swary, I. (1980). An analysis of risk and return characteristics of corporate bankruptcy using capital market data. The journal of finance, 35(4), 1001-1016.
Sun, J., Jia, M. Y., & Li, H. (2011). AdaBoost ensemble for financial distress prediction: An empirical comparison with data from Chinese listed companies. Expert systems with applications, 38(8), 9305-9312.
Wing, Y., Fanny, H., Law, E., & Fung, L. (2003). An Analysis of the financial health of Hong Kong corporations. Retrieved Augost 01, 2019 from https://www.hkma.gov.hk/media/eng/publication-and-research/quarterly-bulletin/qb200312/fa1.pdf
Zmijewski, M. E. (1984). Methodological issues related to the estimation of financial distress prediction models. Journal of accounting research, 59-82.
Zohra, K. F., Mohamed, B., Elhamoud, T., Garaibeh, M., Ilhem, A., & Naimi, H. (2015). Using financial ratios to predict financial distress of Jordanian industrial firms''empirical study using logistic regression''. Academic journal of interdisciplinary studies, 4(2), 137.