طراحی یک مدل بهینه سازی اثرزدا با استفاده از تابع زیان کیفی تاگوچی

نوع مقاله: مقاله پژوهشی

نویسنده

دانشکده مهندسی مکانیک و ساخت و تولید، دانشگاه پوترای مالزی- UPM، سلانگور، مالزی.

چکیده

تابع زیان کیفی تاگوچی یکی از ابزارهای کاربردی مورد استفاده در تکنیک طراحی اثرزدا می­باشد که به‌صورت هم‌زمان میزان انحراف از مقدار هدف و واریانس مشخصه‌ی کیفی خروجی فرآیند را مورد‌توجه قرار می­دهد. در شرایط واقعی بیش‌تر فرآیندها تحت تأثیر فاکتورها و عوامل خارجی و محیطی غیر‌قابل کنترل قرار داشته که باعث فاصله گرفتن مشخصه­های کیفی فرآیند از نقاط ایده­ال و ایجاد نوسان در مقدار این مشخصه‌ها می­شوند. در این تحقیق، استفاده از تابع زیان کیفی تاگوچی جهت مدل‌سازی فرآیند و انتخاب مقادیر بهینه پارامترهای ورودی به فرآیند مورد‌توجه قرار گرفته و اشاره گردیده است که تابع معرفی‌شده توسط تاگوچی در عین کارائی همانند بسیاری دیگر از تکنیک‌های معرفی‌شده در مهندسی کیفیت، دارای محدودیت‌هائی در مدل‌سازی فرآیند است که به‌جهت رفع این محدودیت‌ها، تابع زیان کیفی توسعه‌یافته معرفی و یک مدل بهینه‌سازی غیر‌خطی به‌کمک تابع ذکر‌شده با‌هدف حداقل‌سازی اثرات متغیرهای مزاحم در فرآیند ارائه می‌گردد. در پایان، نحوه‌ی به‌کارگیری مدل معرفی‌شده جهت انتخاب بهینه مقدار پارامترهای ورودی در قالب یک مثال عددی نشان داده شده‌است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A new robust design optimization model using Taguchi loss function

نویسنده [English]

  • Amir Parnianifard
Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Putra Malaysia University, 43400 UPM Serdang, Selangor, Malaysia.
چکیده [English]

Quality loss function is common techniques in robust design terminology that consider the deviation of output from ideal point and variability as well. Mostly in practice, processes are affected by external uncontrollable factors that causes output of process to be far from ideal points with variability around its exact value. In this research, the common Taguchi quality loss function is applied to propose a new robust optimization model that able to choice optimal results of input variables. In this model, the quality loss function is expanded and a nonlinear optimization model is introduced in order to minimize the effect of environmental noise variables. At the end, a numerical example is presented to show the applicability of the proposed model for investigating the best levels of input variables in noisy process.

کلیدواژه‌ها [English]

  • Robust design optimization
  • Taguchi method
  • Quality loss function

Khodaivandi, ah. (2002). Quality engineering using robust design. Hamedan, University of Bo Ali Sina.

Biokagazadeh, p. (2010). Robust Multi-objective portfolio selection problem. Seventh industrial engineering conference. Isfahan, Iran.

Shahin, A., & Parnianifard, A. (2012). Developing a mixing optimization model with robust designing goals. 9th international industrial engineering conference. Tehran, Iran Industrial Engineering Association, Khaje Nasir-e-Din Tusi University of Technology.

Shahriyari, H., & Nabatichian, M, R. (2006). Designing product parameters using mathematical modeling and comparing it with Taguchi method. 5th international industrial engineering conference. Tehran, Iran Engineering Society, Iran University of Science and Technology.

Fattahi, P., Saeedi Mehrabad, M., & Hamidi M. (2005). Providing a component tolerance model to reduce production costs and quality losses. Fourth international conference on industrial engineering. Tehran, Iran Engineering Society, Tarbiat Modares University.

Ghobadi, Sh., Nour al-Sna'a, R., & Shirazi, B. (2005). Designing experiments in fuzzy environments using fuzzy multi-objective decision making. 5th international industrial engineering conference. Tehran, Iran Engineering Society, Iran University of Science and Technology.

Naqi Khani, M., & Alijani, M. (2010). Use of response surface method (RSM) in optimal allocation of tolerance. 7th international conference on industrial engineering. Isfahan, Industrial Engineering Association of Iran, Isfahan University of Technology.

Chandra, M. J. (2001). Statistical quality control. CRC Press.

Beyer, H. G., & Sendhoff, B. (2007). Robust optimization–a comprehensive survey. Computer methods in applied mechanics and engineering, 196(33-34), 3190-3218.

Chen, C. H. (2004). Robust design based on fuzzy optimization. Tamsui oxford journal of mathematical sciences, 20(1), 65-72.

Diez, M., & Peri, D. (2010). Robust optimization for ship conceptual design. Ocean engineering, 37(11-12), 966-977.

Kraslawski, A., Koiranen, T., & Nystrom, L. (1993). Concurrent engineering: robust design in fuzzy environment. Computers & chemical engineering, 17, S447-S452.

Ardakani, M., Noorossana, R., Niaki, S. A., & Lahijanian, H. (2009). Robust parameter design using the weighted metric method—the case of ‘the smaller the better’. International journal of applied mathematics and computer science, 19(1), 59-68.

Messac, A., & Ismail-Yahaya, A. (2002). Multiobjective robust design using physical programming. Structural and multidisciplinary optimization, 23(5), 357-371.

Shahin, A. (2006). Robust design: an advanced quality engineering methodology for change management in the third millennium. Proceedings of the 7th international conference of quality managers (pp. 201-212).

Sun, G., Li, G., Gong, Z., Cui, X., Yang, X., & Li, Q. (2010). Multiobjective robust optimization method for drawbead design in sheet metal forming. Materials & design31(4), 1917-1929.

Parnianifard, A., Azfanizam, A. S., Ariffin, M. K. A., & Ismail, M. I. S. (2018). An overview on robust design hybrid metamodeling : Advanced methodology in process optimization under uncertainty. International journal of industrial engineering computations, 9(1), 1–32.

Khoshnevisan, S., Wang, L., & Juang, C. H. (2017). Response surface-based robust geotechnical design of supported excavation–spreadsheet-based solution. Georisk: assessment and management of risk for engineered systems and geohazards, 11(1), 90-102.

Dellino, G., & Meloni, C. (2015). Uncertainty management in simulation- optimization of complex systems. Springer.

Moghaddam, S., & Mahlooji, M. (2016). Robust simulation optimization using φ-divergence. International journal of industrial engineering computations, 7(4), 517-534.

Parnianifard, A., Azfanizam, A., Ariffin, M. K. A. M., Ismail, M. I. S., & Ale Ebrahim, N. (2018). Recent developments in metamodel based robust black-box simulation optimization: An overview. Decision science letter, 8(1), 17–44.