Abbasbandy, S., & Asady, B. (2002). Note on A new approach for defuzzification. Fuzzy sets and systems, 128(1), 131-132.
Abbasbandy, S., & Asady, B. (2006). Ranking of fuzzy numbers by sign distance. Information sciences, 176(16), 2405-2416.
Abbasbandy, S., & Hajjari, T. (2009). A new approach for ranking of trapezoidal fuzzy numbers. Computers & mathematics with applications, 57(3), 413-419.
Azadi, M., Jafarian, M., Saen, R. F., & Mirhedayatian, S. M. (2015). A new fuzzy DEA model for evaluation of efficiency and effectiveness of suppliers in sustainable supply chain management context. Computers & operations research, 54, 274-285.
Bowlin, W. F. (1998). Measuring performance: An introduction to data envelopment analysis (DEA). The journal of cost analysis, 15(2), 3-27.
De Campos Ibáñez, L. M., & Muñoz, A. G. (1989). A subjective approach for ranking fuzzy numbers. Fuzzy sets and systems, 29(2), 145-153.
Sarrico, C. S. (2001). Data envelopment analysis: A comprehensive text with models, applications, references and DEA-solver software. Journal of the operational research society, 52(12), 1408-1409.
Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European journal of operational research, 2, 429–444.
Cheng, C. H. (1998). A new approach for ranking fuzzy numbers by distance method. Fuzzy sets and systems, 95(3), 307-317.
Chen, L. H., & Lu, H. W. (2001). An approximate approach for ranking fuzzy numbers based on left and right dominance. Computers & mathematics with applications, 41(12), 1589-1602.
Chen, S. H. (1985). Ranking fuzzy numbers with maximizing set and minimizing set. Fuzzy sets and systems, 17(2), 113-129.
Chu, T. C., & Tsao, C. T. (2002). Ranking fuzzy numbers with an area between the centroid point and original point. Computers & mathematics with applications, 43(1-2), 111-117.
Farrell, M. J. (1957). The measurement of productive efficiency. Journal of the royal statistical society. Series A (General), 120(3), 253-290.
Fortemps, P., & Roubens, M. (1996). Ranking and defuzzification methods based on area compensation. Fuzzy sets and systems, 82(3), 319-330.
Hatami-Marbini, A., Ebrahimnejad, A., & Lozano, S. (2017). Fuzzy efficiency measures in data envelopment analysis using lexicographic multiobjective approach. Computers & industrial engineering, 105, 362-376.
Kao, C. (2006). Interval efficiency measures in data envelopment analysis with imprecise data. European journal of operational research, 174(2), 1087-1099.
Liou, T. S., & Wang, M. J. J. (1992). Ranking fuzzy numbers with integral value. Fuzzy sets and systems, 50(3), 247-255.
Rao, P., & Shankar, N. R. (2011). Ranking fuzzy numbers with a distance method using circumcenter of centroids and an index of modality. Advances in fuzzy systems, 2011, 3.
Saati, S. M., Memariani, A., & Jahanshahloo, G. R. (2002). Efficiency analysis and ranking of DMUs with fuzzy data. Fuzzy optimization and decision making, 1(3), 255-267.
Wang, Y. M., Luo, Y., & Liang, L. (2009a). Fuzzy data envelopment analysis based upon fuzzy arithmetic with an application to performance assessment of manufacturing enterprises. Expert systems with applications, 36(3), 5205-5211.
Wang, Z. X., Liu, Y. J., Fan, Z. P., & Feng, B. (2009b). Ranking L–R fuzzy number based on deviation degree. Information sciences, 179(13), 2070-2077.
Yager, R. R. (1981). A procedure for ordering fuzzy subsets of the unit interval. Information sciences, 24(2), 143-161.