# حل معکوس مسئله 1-میانه با استفاده از آلفا برش فازی

نوع مقاله: مقاله پژوهشی - کاربردی

نویسندگان

1 گروه ریاضی کاربردی، دانشگاه شاهد، تهران، ایران.

2 گروه علوم کامپیوتر، دانشگاه شاهد، تهران، ایران.

چکیده

مسائل مکان‌یابی تسهیلات‏، یکی از مهم­ترین مسائل در حوزه تحقیق در عملیات و علم مدیریت به شمار می‌رود. هدف از حل این نوع مسائل، تعیین مکان مناسبی در بین نقاط تقاضا، جهت استقرار تسهیلات و مراکز خدمات‌رسانی است‏، به‌گونه‌ای که این مراکز حداکثر بازده و خدمات­رسانی را با کمترین هزینه به سایر مشتریان متقاضی داشته باشند. از کاربردهای معروف این مسئله می­توان به مکان‌یابی انبارها‏، بیمارستان‌ها‏، ایستگاه‌های امداد و نجات‏، تأسیسات نظامی، شعب بانک و ... اشاره کرد؛ اما در برخی از موارد، تسهیلات به‌صورت غیر بهینه مکان‌یابی شده‌اند و به دلایل مختلفی امکان جابه‌جایی آن‌ها وجود ندارد، در این صورت مسائل مکان­یابی معکوس مطرح می­شوند. یکی از مهم­ترین این نوع مسائل، معکوس مسئله 1-میانه می‌باشد. با توجه به اینکه در دنیای واقعی بسیاری از پارامترهای مسئله مشخص و دقیق نیستند، انگیزه‌ای شد تا در این مقاله معکوس مسئله 1-میانه فازی را بررسی ‌کنیم. بر اساس مفهوم آلفا-برش برای اعداد فازی مثلثی، ابتدا یک مدل برنامه‌ریزی خطی تماماً فازی به‌صورت بازه‌ای برای این مسئله در هر سطح اطمینان  به دست می‌آوریم و سپس یک روش حل بر اساس حساب بازه‌ای و معرفی یک تابع رتبه ارائه می‌کنیم. دراین‌صورت، بر اساس این روش، حل معکوس مسئله 1-میانه با پارامترهای فازی، با حل کلاسیک این مسئله متناظر خواهد بود. در پایان نیز به‌منظور نشان دادن کارایی روش حل پیشنهادی، یک مثال عددی ارائه کرده­ایم.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

### The solving an inverse 1-median problem by using alpha-cut fuzzy

نویسندگان [English]

• Mona Khodagholi 1
• Ardeshir dolati 2
1 Shahed University, Tehran, Iran
2 Shahed University, Tehran, Iran
چکیده [English]

Facility location problems are among the important operation research and management problems. Locating storehouses, hospitals, rescue-relief stations, military bases,bank branches, etc are some of its famous applications. The aim of solving such problems is to determine the best location for the facilities to ensure their maximum efficiency to provide services for customers. Location problems have recently been studied in the light of inverse approach, various classic algorithms for being introduced for their solution. 1-median problem is one of the most famous functions of target location. However, given that real world parameters are not exact, we decided to investigate fuzzy 1-median inverse problem. Based on alfa-cut concept for fuzzy triangular numbers, first we obtain a fully fuzzy linear programming model which proposes a range for different levels of certainty. Then we propose a solution method based on range account. Thus the solution of 1-median inverse problem with fuzzy parameters corresponds to its classic solution. To help better understand the proposed method, we show a numerical example.

کلیدواژه‌ها [English]

• Inverse 1-median problem
• Maximal subtree
• Optimality criterion
• Interval arithmetic

### مراجع

خداقلی، منا و دولتی، اردشیر. (1397). کاربرد مسائل مکان­یابی در برنامه‌ریزی شهری. پنجمین همایش ریاضیات و علوم انسانی (ریاضی مالی).

Allahviranloo, T., Lotfi, F. H., Kiasary, M. K., Kiani, N. A., & Alizadeh, L. (2008). Solving fully fuzzy linear programming problem by the ranking function. Applied mathematical sciences2(1), 19-32.

Balas, E., & Zemel, E. (1980). An algorithm for large zero-one knapsack problems. Operations research28(5), 1130-1154.

Bellman, R. E., & Zadeh, L. A. (1970). Decision-making in a fuzzy environment. Management science17(4), B-141.

Bonab, F. B., Burkard, R. E., & Alizadeh, B. (2010). Inverse median location problems with variable coordinates. Central european journal of operations research18(3), 365-381.

Bonab, F. B., Burkard, R. E., & Gassner, E. (2011). Inverse p-median problems with variable edge lengths. Mathematical methods of operations research73(2), 263-280.

Buckley, J. J., & Feuring, T. (2000). Evolutionary algorithm solution to fuzzy problems: fuzzy linear programming. Fuzzy sets and systems109(1), 35-53.

Burkard, R. E., Pleschiutschnig, C., & Zhang, J. (2004). Inverse median problems. Discrete optimization1(1), 23-39.

Burkard, R. E., Pleschiutschnig, C., & Zhang, J. (2008). The inverse 1-median problem on a cycle. Discrete optimization5(2), 242-253.

Canós, M. J., Ivorra, C., & Liern, V. (2001). The fuzzy p-median problem: A global analysis of the solutions. European journal of operational research130(2), 430-436.

Canós, M. J., Ivorra, C., & Liern, V. (2008). Marginal analysis for the fuzzy p-median problem. European journal of operational research191(1), 264-271.

Dehghan, M., Hashemi, B., & Ghatee, M. (2006). Computational methods for solving fully fuzzy linear systems. Applied mathematics and computation179(1), 328-343.

Dutta, P., Boruah, H., & Ali, T. (2011). Fuzzy Arithmetic with and without using α-cut method: A Comparative Study. International journal of latest trends in computing2(1), 99-107.

Ezzati, R., Khorram, E., & Enayati, R. (2015). A new algorithm to solve fully fuzzy linear programming problems using the MOLP problem. Applied mathematical modelling39(12), 3183-3193.

Fathali, J., Rad, N. J., & Sherbaf, S. R. (2014). The p-median and p-center Problems on Bipartite Graphs. Iranian journal of matematical sciences and informatics9(2), 37-43.

Galavii, M. (2010). The inverse 1-median problem on a tree and on a path. Electronic notes in discrete mathematics36, 1241-1248.

Guan, X., & Zhang, B. (2012). Inverse 1-median problem on trees under weighted Hamming distance. Journal of global optimization54(1), 75-82.

Halpern, J. (1976). The location of a center‐median convex combination on an undirected tree. Journal of regional science16(2), 237-245.

Helen, R., & Uma, G. (2015). A new operation and ranking on Pentagon Fuzzy Numbers. International journal of mathematical sciences and applications5(2), 341-346.

Hosseinzadeh, A., & Edalatpanah, S. A. (2016). A new approach for solving fully fuzzy linear programming by using the lexicography method. Advances in fuzzy systems4.

Kamble, A. J. (2017). Some Notes on Pentagonal Fuzzy Numbers. International journal of fuzzy mathematical archive, 13(2),113-121.

Kaur, J., & Kumar, A. (2016). An Introduction to Fuzzy Linear Programming Problems. Springer Publishing Company, Incorporated.

Kumar, A., Kaur, J., & Singh, P. (2011). A new method for solving fully fuzzy linear programming problems. Applied mathematical modelling35(2), 817-823.

Kutangila-Mayoya, D., & Verdegay, J. L. (2005). p-Median problems in a fuzzy environment. Mathware & soft computing, 12(2).

Nguyen, K. T. (2016). Inverse 1-median problem on block graphs with variable vertex weights. Journal of optimization theory and applications168(3), 944-957.

Nguyen, K. T., & Sepasian, A. R. (2016). The inverse 1-center problem on trees with variable edge lengths under Chebyshev norm and Hamming distance. Journal of combinatorial optimization32(3), 872-884.

Perez, J. A. M., Vega, J. M. M., & Verdegay, J. L. (2004). Fuzzy location problems on networks. Fuzzy sets and systems142(3), 393-405.

Najafi, H. S., & Edalatpanah, S. A. (2013). A note on “A new method for solving fully fuzzy linear programming problems”. Applied mathematical modelling37(14-15), 7865-7867.

Sudha, A. S., & Anitha, N. (2015). Solving a Interval Fuzzy Linear Programming Problem using Alpha-Cut Operation. International journal of computer applications112(10).

Sudha, A. S., & Vijayalakshmi, K. R. Application Of Symmetric Hexagonal Intuitionist Fuzzy Numbers In A Transportation Problem. Mathematical sciences international research journal, 5(2), 2278-8697.

Taleshian, F., & Fathali, J. (2016). A Mathematical Model for Fuzzy-Median Problem with Fuzzy Weights and Variables. Advances in operations research2016.

Tanaka, H., Okuda, T., & Asai, K. (1973). Fuzzy mathematical programming. Transactions of the society of instrument and control engineers9(5), 607-613.

Wu, L., Lee, J., Zhang, J., Wang, Q. (2013). The inverse 1-median problem on tree networks with variable real edge lengths. Mathematical problems in engineering. http://dx.doi.org/10.1155/2013/313868.

Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8, 69-78.

Zhang, G., Wu, Y. H., Remias, M., & Lu, J. (2003). Formulation of fuzzy linear programming problems as four-objective constrained optimization problems. Applied Mathematics and computation139(2-3), 383-399.

Zimmermann, H. J. (1975). Description and optimization of fuzzy systems. International journal of general system2(1), 209-215.

### سابقه مقاله

• تاریخ دریافت: 06 دی 1396
• تاریخ بازنگری: 28 اردیبهشت 1397
• تاریخ پذیرش: 29 خرداد 1397