# حل مسائل بهینه‌سازی غیرخطی از روش بهینه‌سازی نلدرمید

نوع مقاله: مقاله پژوهشی - کاربردی

نویسنده

گروه ریاضی، دانشگاه فرهنگیان ارومیه، ارومیه، ایران.

چکیده

در این مقاله، یک روش ابتکاری برای حل مسائل بهینه‌سازی غیرخطی که دارای قیود و تابع هدف محدب هستند طراحی‌شده است. در این روش، یک تابع هزینه تعریف می­گردد، سپس مقادیر متغیرها طوری تعیین می‌شوند که آن تابع هدف مینیمم شود. جهت ایجاد تابع هزینه مناسب، از شرایط بهینگی K.K.T استفاده‌شده است. مینیمم‌سازی تابع هزینه با استفاده از روش بهینه‌سازی بدون مشتق نلدرمید انجام‌شده است. کاربردها نشان می‌دهند کارایی این روش برای مسائل با ابعاد بزرگ مانند R^10 نسبت به روش‌های مشابه بیشتر است و به‌کارگیری این روش، آسان‌تر از روش‌های مشابه است. توسط مثال‌هایی کارایی روش توضیح داده‌شده است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

### Solving nonlinear optimization via Nelder-Mead optimization method

نویسنده [English]

• Azhdar Soleymanpour Bakefayat
Math Faculty, Ormia, Farhangian University.
چکیده [English]

In this paper, A innovative method designed to solving nonlinear optimization problems with convex object function and constrained. In this method, we define an cost function and we find variables to minimization of cost function. For create properly cost function we use K. K. T. optimal conditions. We used Nelder-Mead without derivative optimization method to minimization of cost function. When, dimensions of problem is about 10, application shows that efficiency of Nelder-Mead method is more than the other methods. Using new mathod is easier than the similar methods. By several examples efficiency of new method are verified.

کلیدواژه‌ها [English]

• KKT optimal conditions
• Unconstrained optimization
• Nonlinear Programming

### مراجع

سلیمانپور باکفایت اژدر. (1392). شبکه‌های عصبی مصنوعی در علوم پایه، ارومیه: انتشارات مؤلف

Bazaraa, M. S., Sherali, H. D., & Shetty, C. M. (1993). Nonlinear Programming: Theory and Algorithms. John Wiley and Sons New York. NY Google Scholar.

Rao, S. S., & Bard, J. (1997). Engineering optimization: theory and practice. IIE transactions29(9), 799.

Kreyszig, E. (1978). Introductory functional analysis with applications. New York: wiley.

Blum, E. K., & Li, L. K. (1991). Approximation theory and feedforward networks. Neural networks4(4), 511-515.

Nazemi, A. R. (2012). A dynamic system model for solving convex nonlinear optimization problems. Communications in nonlinear science and numerical simulation17(4), 1696-1705.

Fajfar, I., Puhan, J., & Bűrmen, Á. (2017). Evolving a Nelder–Mead Algorithm for Optimization with Genetic Programming. Evolutionary computation25(3), 351-373.

Li, G., Yan, Z., & Wang, J. (2014). A one-layer recurrent neural network for constrained nonsmooth invex optimization. Neural networks50, 79-89.

Luersen, M. A., & Le Riche, R. (2004). Globalized Nelder–Mead method for engineering optimization. Computers & structures82(23-26), 2251-2260.

Nelder, J. A., & Mead, R. (1965). A simplex method for function minimization. The computer journal7(4), 308-313.

Liu, Q., Tang, W. M., & Yang, X. M. (2009). Properties of saddle points for generalized augmented Lagrangian. Mathematical methods of operations research69(1), 111-124.

Yang, Y., & Cao, J. (2008). A feedback neural network for solving convex constraint optimization problems. Applied mathematics and computation201(1-2), 340-350.

Yang, Y., & Gao, Y. (2011). A new neural network for solving nonlinear convex programs with linear constraints. Neurocomputing74(17), 3079-3083.

### سابقه مقاله

• تاریخ دریافت: 01 فروردین 1397
• تاریخ بازنگری: 29 اردیبهشت 1397
• تاریخ پذیرش: 30 خرداد 1397