نوع مقاله : مقاله پژوهشی - کاربردی

نویسندگان

گروه ریاضی، واحد اصفهان (خوراسگان)، دانشگاه آزاد اسلامی، اصفهان، ایران.

10.22105/dmor.2023.339388.1600

چکیده

هدف: این مطالعه به حل مساله انتخاب مکان تسهیلات در مواجه با سناریوهای تصمیم‌گیری چندمعیاره، به‌ویژه با تمرکز بر روی مسایل تصمیم‌گیری چندمعیاره فازی نوع-1 می‌پردازد. در این تحقیق، به‌منظور مقابله با دشواری تعیین درجات عضویت دقیق برای مجموعه‌های فازی، از اعداد فازی-بازه‌ای برای بیان امتیازها استفاده شده است.
روش‌شناسی پژوهش: روش پیشنهادی IVF-COPRAS، با تمرکز بر کاهش ریسک عدم‌قطعیت، برای افزایش قابلیت اطمینان تصمیم‌گیری در مسایل IVF استفاده می‌شود. این روش برای یک مورد واقعی که شامل انتخاب مکانی برای گودال‌های دفن زباله مرطوب شهری در یک شهر بزرگ ایران است، اعمال و تحلیل‌های مقایسه‌ای با روش‌های دیگر برای ارزیابی رویکرد پیشنهادی انجام می‌شود.
یافته‌ها: این مطالعه اثربخشی روش IVF-COPRAS را در رسیدگی به مسایل انتخاب مکان تسهیلات در MCDM نشان می‌دهد. با استفاده از IVFN، این روش با موفقیت عدم‌قطعیت را مدیریت می‌کند و منجر به تصمیمات قابل اعتمادتر می‌شود. کاربرد در یک سناریوی عملی، کارایی روش را برجسته می‌کند و تحلیل مقایسه‌ای بینش‌هایی را در مورد عملکرد آن نسبت به روش‌های دیگر ارایه می‌دهد.
اصالت/ارزش‌افزوده علمی: این تحقیق یک رویکرد جدید با روش IVF-COPRAS برای مدیریت چالش‌های انتخاب مکان تسهیلات در MCDM ارایه می‌کند. اتکا به IVFNs، دیدگاه منحصربه‌فردی را در مورد عدم‌قطعیت در تصمیم‌گیری ارایه می‌کند و قابلیت اطمینان تصمیم را افزایش می‌دهد. کاربرد دنیای واقعی بر اهمیت عملی این روش تاکید می‌کند، کمکی ارزشمند به تحقیقات MCDM ارایه می‌نماید و ابزاری روش‌شناختی برای مسایل تصمیم‌گیری مشابه در حوزه‌های مختلف ارایه می‌دهد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

An interval valued fuzzy complex proportional assessment (IVF-COPRAS) method to solve MCDM problem with an application

نویسندگان [English]

  • Mahin Ashouri
  • Abdollah Hadi-Vencheh
  • Ali Jamshidi

Department of Mathematics, Isfahan Branch (Khorasgan), Islamic Azad University, Isfahan, Iran.

چکیده [English]

Purpose: This study aims to tackle the challenging facility location selection problem in Multiple Criteria Decision Making (MCDM) scenarios, explicitly focusing on type-1 fuzzy MCDM issues. The research introduces Interval Valued Fuzzy Numbers (IVFNs) to express ratings, addressing the difficulty in determining precise membership degrees for fuzzy sets.
Methodology: The proposed IVF-COPRAS method, centered on uncertainty risk reduction, is employed to enhance decision-making reliability in IVF decision problems. This methodology is applied to a real-world case involving the selection of a location for municipal wet waste landfill pits in a major Iranian city. Comparative analyses with other methods are conducted to assess the proposed approach.
Findings: The study demonstrates the effectiveness of the IVF-COPRAS method in addressing facility location selection problems within MCDM. By utilizing IVFNs, the method successfully manages uncertainty, leading to more reliable decisions. Application to a practical scenario highlights the method's efficacy, and the comparative analysis provides insights into its performance relative to other methods.
Originality/Value: This research contributes a novel approach with the IVF-COPRAS method for handling facility location selection challenges in MCDM. The reliance on IVFNs offers a unique perspective on uncertainty in decision-making, enhancing decision reliability. The real-world application emphasizes the method's practical significance, providing a valuable contribution to MCDM research and offering a methodological tool for similar decision-making problems across diverse domains.

کلیدواژه‌ها [English]

  • Multiple criteria decision making
  • Interval valued fuzzy sets
  • Type-1 fuzzy sets
  • COPRAS method
[1] Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338–353.
[2] Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy sets and systems, 20(1), 87–96.
[3] Turksen, I. B. (1986). Interval valued fuzzy sets based on normal forms. Fuzzy sets and systems, 20(2), 191–210. DOI:10.1016/0165-0114(86)90077-1
[4] Gorzałczany, M. B. (1987). A method of inference in approximate reasoning based on interval-valued fuzzy sets. Fuzzy sets and systems, 21(1), 1–17. DOI:10.1016/0165-0114(87)90148-5
[5] Wang, G., & Li, X. (1998). The applications of interval-valued fuzzy numbers and interval-distribution numbers. Fuzzy sets and systems, 98(3), 331–335. DOI:10.1016/s0165-0114(96)00368-5
[6] Wang, G., & Li, X. (1999). Correlation and information energy of interval-valued fuzzy numbers. Fuzzy sets and systems, 103(1), 169–175. DOI:10.1016/S0165-0114(97)00303-5
[7]     Wang, G. J., & He, Y. Y. (2000). Intuitionistic fuzzy sets and L-fuzzy sets. Fuzzy sets and systems, 110(2), 271–274.
[8]     Hong, D. H., & Lee, S. (2002). Some algebraic properties and a distance measure for interval-valued fuzzy numbers. Information sciences, 148(1–4), 1–10.
[9]     Tsaur, S. H., Chang, T. Y., & Yen, C. H. (2002). The evaluation of airline service quality by fuzzy MCDM. Tourism management, 23(2), 107–115.
[10]   Deschrijver, G. (2007). Arithmetic operators in interval-valued fuzzy set theory. Information sciences, 177(14), 2906–2924. DOI:10.1016/j.ins.2007.02.003
[11]   Grzegorzewski, P. (2004). Distances between intuitionistic fuzzy sets and/or interval-valued fuzzy sets based on the Hausdorff metric. Fuzzy sets and systems, 148(2), 319–328. DOI:10.1016/j.fss.2003.08.005
[12]   Chen, L. H., & Ouyang, L. Y. (2006). Fuzzy inventory model for deteriorating items with permissible delay in payment. Applied mathematics and computation, 182(1), 711–726.
[13]   Kaklauskas, A., Zavadskas, E. K., Raslanas, S., Ginevicius, R., Komka, A., & Malinauskas, P. (2006). Selection of low-e windows in retrofit of public buildings by applying multiple criteria method COPRAS: A Lithuanian case. Energy and buildings, 38(5), 454–462. DOI:10.1016/j.enbuild.2005.08.005
[14]   Wang, Y. M., Yang, J. B., Xu, D. L., & Chin, K. S. (2007). On the combination and normalization of interval-valued belief structures. Information sciences, 177(5), 1230–1247.
[15]   Chen, J. H., & Chen, S. M. (2007). A new method to measure the similarity between interval-valued fuzzy numbers. Proceedings of the sixth international conference on machine learning and cybernetics, ICMLC 2007 (Vol. 3, pp. 1403–1408). IEEE. DOI: 10.1109/ICMLC.2007.4370364
[16]   Ertuǧrul, I., & Karakaşoǧlu, N. (2009). Performance evaluation of Turkish cement firms with fuzzy analytic hierarchy process and TOPSIS methods. Expert systems with applications, 36(1), 702–715. DOI:10.1016/j.eswa.2007.10.014
[17]   Deschrijver, G., & Kerre, E. E. (2007). On the position of intuitionistic fuzzy set theory in the framework of theories modelling imprecision. Information sciences, 177(8), 1860–1866. DOI:10.1016/j.ins.2006.11.005
[18]   Shih, H. S., Shyur, H. J., & Lee, E. S. (2007). An extension of TOPSIS for group decision making. Mathematical and computer modelling, 45(7–8), 801–813. DOI:10.1016/j.mcm.2006.03.023
[19]   Wang, H. Y., & Chen, S. M. (2008). Evaluating students’ answerscripts using fuzzy numbers associated with degrees of confidence. IEEE transactions on fuzzy systems, 16(2), 403–415. DOI:10.1109/TFUZZ.2007.895958
[20]   Lee, W. S., Tzeng, G. H., Guan, J. L., Chien, K. T., & Huang, J. M. (2009). Combined MCDM techniques for exploring stock selection based on Gordon model. Expert systems with applications, 36(3), 6421–6430.
[21]   Rao, R. V., & Davim, J. P. (2008). A decision-making framework model for material selection using a combined multiple attribute decision-making method. International journal of advanced manufacturing technology, 35(7–8), 751–760. DOI:10.1007/s00170-006-0752-7
[22]   Chen, S. M., Wang, N. Y., & Pan, J. S. (2009). Forecasting enrollments using automatic clustering techniques and fuzzy logical relationships. Expert systems with applications, 36(8), 11070–11076. DOI:10.1016/j.eswa.2009.02.085
[23]   Ashtiani, B., Haghighirad, F., Makui, A., & ali Montazer, G. (2009). Extension of fuzzy TOPSIS method based on interval-valued fuzzy sets. Applied soft computing, 9(2), 457–461.
[24]   Wang, Z. X., Niu, L. L., Wu, R. X., & Lan, J. B. (2014). Multicriteria decision-making method based on risk attitude under interval-valued intuitionistic fuzzy environment. Fuzzy information and engineering, 6(4), 489–504. DOI:10.1016/j.fiae.2015.01.006
[25]   Rashid, T., Beg, I., & Husnine, S. M. (2014). Robot selection by using generalized interval-valued fuzzy numbers with TOPSIS. Applied soft computing journal, 21, 462–468. DOI:10.1016/j.asoc.2014.04.002
[26]   Mokhtarian, M. N., Sadi-Nezhad, S., & Makui, A. (2014). A new flexible and reliable IVF-TOPSIS method based on uncertainty risk reduction in decision making process. Applied soft computing journal, 23, 509–520. DOI:10.1016/j.asoc.2014.05.035
[27]   Nguyen, H. T., Md Dawal, S. Z., Nukman, Y., Aoyama, H., & Case, K. (2015). An integrated approach of fuzzy linguistic preference based AHP and fuzzy COPRAS for machine tool evaluation. PLoS one, 10(9), e0133599. DOI:10.1371/journal.pone.0133599
[28]   Das, S., Kar, S., & Pal, T. (2017). Robust decision making using intuitionistic fuzzy numbers. Granular computing, 2(1), 41–54. DOI:10.1007/s41066-016-0024-3
[29]   Meng, S., Liu, N., & He, Y. (2017). GIFIHIA operator and its application to the selection of cold chain logistics enterprises. Granular computing, 2(3), 187–197. DOI:10.1007/s41066-017-0038-5
[30]   Wang, C., Fu, X., Meng, S., & He, Y. (2017). Multi-attribute decision-making based on the SPIFGIA operators. Granular computing, 2(4), 321–331. DOI:10.1007/s41066-017-0046-5
[31]   Mahmood, T., Liu, P., Ye, J., & Khan, Q. (2018). Several hybrid aggregation operators for triangular intuitionistic fuzzy set and their application in multi-criteria decision making. Granular computing, 3(2), 153–168. DOI:10.1007/s41066-017-0061-6
[32]   Joshi, B. P. (2018). Moderator intuitionistic fuzzy sets with applications in multi-criteria decision-making. Granular computing, 3(1), 61–73. DOI:10.1007/s41066-017-0056-3
[33]   Baloui Jamkhaneh, E., & Garg, H. (2018). Some new operations over the generalized intuitionistic fuzzy sets and their application to decision-making process. Granular computing, 3(2), 111–122. DOI:10.1007/s41066-017-0059-0
[34]   Lin, M., Huang, C., & Xu, Z. (2020). MULTIMOORA based MCDM model for site selection of car sharing station under picture fuzzy environment. Sustainable cities and society, 53, 101873. DOI:10.1016/j.scs.2019.101873
[35]   Mahdiyar, A., Mohandes, S. R., Durdyev, S., Tabatabaee, S., & Ismail, S. (2020). Barriers to green roof installation: An integrated fuzzy-based MCDM approach. Journal of cleaner production, 269, 122365. DOI:10.1016/j.jclepro.2020.122365
[36]   Jahangiri, M., Shamsabadi, A. A., Mostafaeipour, A., Rezaei, M., Yousefi, Y., & Pomares, L. M. (2020). Using fuzzy MCDM technique to find the best location in Qatar for exploiting wind and solar energy to generate hydrogen and electricity. International journal of hydrogen energy, 45(27), 13862–13875. DOI:10.1016/j.ijhydene.2020.03.101
[37]   Azizi Nafteh, M., & Shahrokhi, M. (2022). Presenting COPRAS multi-criteria group decision making method using interval and punctual type 2 fuzzy sets. Journal of decisions and operations research, 7(2), 355–372. (In Persian). https://www.journal-dmor.ir/article_142520.html
[38]   Farnam, M., & Darehmiraki, M. (2022). Interval valued fuzzy sets; application in the decision-making process related to the qualitative qualification of contractors. Journal of decisions and operations research, 7(3), 466–484. (In Persian). https://www.journal-dmor.ir/article_141885.html?lang=en
[39]   Dehghani Filabadi, A., & Hesamian, G. (2021). Development of a multi-period multi-attribute group decision-making method using type-2 fuzzy set of linguistic variables. International journal of research in industrial engineering, 10(2), 138–154. https://www.riejournal.com/article_129907.html
[40]   Kane, L., Diakite, M., Kane, S., Bado, H., & Diawara, D. (2021). Date fully fuzzy transportation problems with pentagonal and hexagonal fuzzy numbers. Journal of applied research on industrial engineering, 8(3), 251–269. http://creativecommons.org/licenses/by/4.0
[41]   Khalifa, H. A. (2022). A signed distance for (γ, δ) interval-valued fuzzy numbers to solve multi objective assignment problems with fuzzy parameters. International journal of research in industrial engineering, 11(2), 205–213.
[42]   Saberhoseini, S. F., Edalatpanah, S. A., & Sorourkhah, A. (2022). Choosing the best private-sector partner according to the risk factors in neutrosophic environment. Big data and computing visions, 2(2), 61–68. DOI:10.22105/bdcv.2022.334005.1075
[43]   Dirik, M. (2022). Type-2 fuzzy logic controller design optimization using the PSO approach for ECG prediction. Journal of fuzzy extension and applications, 3(2), 158–168. http://www.journal-fea.com/article_147123.html
[44]   Ebadi Torkayesh, A. E., & Simic, V. (2022). Stratified hybrid decision model with constrained attributes: Recycling facility location for urban healthcare plastic waste. Sustainable cities and society, 77, 103543. DOI:10.1016/j.scs.2021.103543
[45]   Mishra, A. R., Liu, P., & Rani, P. (2022). COPRAS method based on interval-valued hesitant Fermatean fuzzy sets and its application in selecting desalination technology. Applied soft computing, 119, 108570. DOI:10.1016/j.asoc.2022.108570