نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مدیریت و مهندسی صنایع، دانشگاه صنعتی مالک اشتر، تهران، ایران.

10.22105/dmor.2022.331970.1583

چکیده

هدف: این تحقیق یک مدل ریاضی چندهدفه استوار، با در نظر‌گرفتن هم ‌زمان هزینه و ریسک‌های مربوط به محیط‌زیست (مصرف آب و آلودگی محیط‌زیست)، اجتماع (شرایط کاری و سلامت کارکنان)، ریسک‌های عملیاتی (تغییر نرخ تقاضا و نرخ برگشت محصولات) و نیز ریسک اختلال (حوادث و بیماری‌ها مانند کرونا) در زنجیره‌تامین و استفاده از همکاری افقی برای مقابله با آن ارایه می‌کند.
روش‌شناسی پژوهش: در این تحقیق از مدل‌سازی برنامه‌ریزی خطی عدد صحیح آمیخته و تکنیک‌های بهینه‌سازی استوار برای طراحی شبکه زنجیره‌تامین حلقه بسته استفاده ‌شده و یک روش چندهدفه برای حل مساله و ایجاد فضاهای پارتویی توسعه داده‌ شده است.
یافته‌ها: نتایج محاسبات نشان‌دهنده میزان اثرگذاری احتمال خرابی بر میزان ظرفیت تسهیلات و نیز هزینه کل شبکه و میزان همکاری بین اعضای زنجیره‌تامین برای مقابله با ریسک، می‌باشد. هم‌چنین میزان هزینه موردنیاز برای تخصیص به تسهیلات قابل‌اطمینان و نامطمئن و نیز ایجاد فضای پارتویی مناسب برای تصمیم‌گیری در خصوص انتخاب بهینه تسهیلات، ظرفیت و جریان بین آن‌ها و تکنولوژی تولید آهن و فولاد، با توجه به شاخص‌های پایداری و مسئولیت‌پذیری اجتماعی، از دیگر یافته‌های تحقیق می‌باشد.
اصالت/ارزش ‌افزوده علمی: در این مطالعه برای نخستین بار طراحی شبکه استوار، پایدار و تاب‌آور آهن و فولاد تحت ریسک‌های مختلف و به‌صورت هم‌زمان موردمطالعه قرار گرفته است. از همکاری افقی به‌عنوان رویکردی جدید برای مقابله با ریسک بهره گرفته‌ شده است و روش حلی برای مسایل چندهدفه توسعه ‌یافته که با استفاده از نتایج این مطالعه تصمیم‌گیرنده با در نظرگیری میزان مطلوبیت برای هر یک از اهداف، می‌تواند تصمیمات آگاهانه‌ای در خصوص زنجیره‌تامین تحت شرایط ریسک داشته باشد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

A sustainable and reliable model for iron closed-loop supply chain network design with considering risk and lateral transmision and developed multi-objective decision-making method

نویسندگان [English]

  • Hamid Saffari
  • Morteza Abbasi
  • Jafar Gheidar-Kheljani

Faculty of Management and Industrial Engineering, Malek Ashtar University of Technology, Tehran, Iran.

چکیده [English]

Purpose: This research proposes a multi-objective and robust model considering both cost and risks related to the environment (water consumption and environmental pollution), social responsibility (working conditions and employee health), operations (change in demand and return rates), and disruption (accs and diseases such as COVID-19) in the supply chain, using horizontal collaboration to deal with it.
Methodology: In this research, mixed-integer linear programming and robust optimization technique have been used for closed-loop supply chain network design and a multi-objective method has been developed to solve the problem and create Pareto spaces.
Findings: The results of the calculations show the effect of failure probability on the capacity of the facility, the total cost of the network and the degree of collaboration between members of the supply chain to deal with the risk. Also, the amount of cost required for allocation to reliable and unreliable facilities and also creating a suitable Pareto space for deciding on the optimal choice of facilities, capacity and flow between them and iron and steel production technology, according to sustainability and social responsibility indicators, are other research findings.
Originality/Value: In this study, for the first time, the design of a robust, sustainable, and resilient network of iron and steel under different risks has been studied. Horizontal collaboration has been used as a new approach to deal with risk and solution method for multi-objective problems has been developed. Using the results of this study, the decision-maker can make informed decisions about the supply chain under risk conditions by considering suitability for each of the objectives.

کلیدواژه‌ها [English]

  • Robust optimization
  • Iron and steel supply chain
  • Sustainable supply chain network design
  • Risk management
  • Collaboration
  1. Kleindorfer, P. R., & Saad, G. H. (2005). Managing disruption risks in supply chains. Production and operations management14(1), 53-68. http://dx.doi.org/10.1111/j.1937-5956.2005.tb00009.x
  2. Snyder, L. V., Atan, Z., Peng, P., Rong, Y., Schmitt, A. J., & Sinsoysal, B. (2016). OR/MS models for supply chain disruptions: a review. Iie transactions48(2), 89-109.
  3. Zhalechian, M., Torabi, S. A., & Mohammadi, M. (2018). Hub-and-spoke network design under operational and disruption risks. Transportation research part E: logistics and transportation review109, 20-43. https://doi.org/10.1016/j.tre.2017.11.001
  4. Pullman, M. E., Maloni, M. J., & Carter, C. R. (2009). Food for thought: social versus environmental sustainability practices and performance outcomes. Journal of supply chain management45(4), 38-54.
  5. Farbod, E., & Hamidieh, A. (2022). Investigating the impact of green supply chain on economic performance: neural network models and structural equations approach. Journal of decisions and operations research. (In Persian). https://doi.org/10.22105/dmor.2022.283479.1393
  6. Govindan, K., Jafarian, A., & Nourbakhsh, V. (2015). Bi-objective integrating sustainable order allocation and sustainable supply chain network strategic design with stochastic demand using a novel robust hybrid multi-objective metaheuristic. Computers and operations research62, 112-130.
  7. Mokhlesabadi, S., & Hashemi Gohar, M. (2022). Designing a fuzzy goal programming (FGP) model in green supply network closed loop (GSNCL). Journal of decisions and operations research, 6(Spec. Issue), 1-30. (In Persian). https://doi.org/10.22105/dmor.2021.296381.1451
  8. Ghahremani-Nahr, J., Nozari, H., & Najafi, S. E. (2020). Design a green closed loop supply chain network by considering discount under uncertainty. Journal of applied research on industrial engineering, 7(3), 238-266. https://doi.org/10.22105/jarie.2020.251240.1198
  9. Tajani, E. K., Kanafi, A. G., Daneshmand-Mehr, M., & Hosseinzadeh, A. A. (2022). Robust design of an agile sustainable closed-loop supply chain network with different sales channels. Channels7(1), 160-210. (In Persian). https://dorl.net/dor/20.1001.1.25385097.1401.7.1.10.5
  10. Giannakis, M., & Papadopoulos, T. (2016). Supply chain sustainability: a risk management approach. International journal of production economics171, 455-470. https://doi.org/10.1016/j.ijpe.2015.06.032
  11. Duhamel, F., Carbone, V., & Moatti, V. (2016). The impact of internal and external collaboration on the performance of supply chain risk management. International journal of logistics systems and management23(4), 534-557. https://doi.org/10.1504/IJLSM.2016.075212
  12. Simatupang, T. M., & Sridharan, R. (2005). The collaboration index: a measure for supply chain collaboration. International journal of physical distribution & logistics management, 35(1), 44-62. http://dx.doi.org/10.1108/09600030510577421
  13. Tang, A., Fakourfar, O., Neustaedter, C., & Bateman, S. (2017). Collaboration in 360 videochat: challenges and opportunities. https://prism.ucalgary.ca/handle/1880/51950
  14. Difrancesco, R. M., Meena, P., & Tibrewala, R. (2021). Buyback and risk-sharing contracts to mitigate the supply and demand disruption risks. European journal of industrial engineering15(4), 550-581. https://ideas.repec.org/a/ids/eujine/v15y2021i4p550-581.html
  15. Oh, S. C., Min, H., & Ahn, Y. H. (2021). Inventory risk pooling strategy for the food distribution network in Korea. European journal of industrial engineering15(4), 439-462. https://doi.org/10.1504/EJIE.2021.116131
  16. Chopra, S., & Sodhi, M. S. (2004). Managing risk to avoid supply-chain breakdown. MIT Sloan management review, 46(1), 53-61. https://d1wqtxts1xzle7.cloudfront.net/34808711/Supply_chain_Break_down-libre.pdf?
  17. Anderson, D. R. (2006). The critical importance of sustainability risk management. Risk Management53(4), 66-72.
  18. Hofmann, H., Busse, C., Bode, C., & Henke, M. (2014). Sustainability‐related supply chain risks: conceptualization and management.Business strategy and the environment23(3), 160-172.
  19. International Organization Standardization. (2006). Guidance on social responsibility. https://www.iso.org/obp/ui/#iso:std:iso:26000:ed-1:v1:en
  20. Razdan, M. R., Aghasi, S., & Davoodi, S. M. R. (2023). Ranking factors affecting supply chain risk with a combined approach of neutrosophic analytical hierarchy process and TOPSIS. Journal of applied research on industrial engineering10(1), 1-13.
  21. Xames, D., Tasnim, F., Mim, T. I., & Kiron, A. (2022). COVID-19 and food supply chain disruptions in Bangladesh: impacts and strategies. International journal of research in industrial engineering11(2), 155-164.
  22. Groothedde, B. (2005). Collaborative logistics and transportation networks: a modeling approach to hub network design (PHD Thesis, Delf University of Technology). http://resolver.tudelft.nl/uuid:53de6d9c-4047-4d3e-bc96-4eb75a8f4528
  23. Liu, K., Zhou, Y., & Zhang, Z. (2010). Capacitated location model with online demand pooling in a multi-channel supply chain. European journal of operational research, 207(1), 218-231.
  24. Pan, S., Ballot, E., & Fontane, F. (2013). The reduction of greenhouse gas emissions from freight transport by pooling supply chains. International journal of production economics143(1), 86-94.
  25. Moghaddam, M., & Nof, S. Y. (2016). Real-time optimization and control mechanisms for collaborative demand and capacity sharing. International journal of production economics, 171, 495-506.
  26. Ouhader, H., & El Kyal, M. (2017). Combining facility location and routing decisions in sustainable urban freight distribution under horizontal collaboration: how can shippers be benefited? Mathematical problems in engineering2017. https://doi.org/10.1155/2017/8687515
  27. Habibi, M. K., Allaoui, H., & Goncalves, G. (2018). Collaborative hub location problem under cost uncertainty. Computers & industrial engineering, 124, 393-410.
  28. Aloui, A., Hamani, N., Derrouiche, R., & Delahoche, L. (2022). Assessing the benefits of horizontal collaboration using an integrated planning model for two-echelon energy efficiency-oriented logistics networks design. International journal of systems science: operations & logistics9(3), 302-323.
  29. Carter, C. R., & Jennings, M. M. (2002). Social responsibility and supply chain relationships. Transportation research part e: logistics and transportation review38(1), 37-52.
  30. Cruz, J. M., & Wakolbinger, T. (2008). Multiperiod effects of corporate social responsibility on supply chain networks, transaction costs, emissions, and risk. International journal of production economics116(1), 61-74.
  31. Cruz, J. M. (2009). The impact of corporate social responsibility in supply chain management: multicriteria decision-making approach. Decision support systems48(1), 224-236.
  32. Dehghanian, F., & Mansour, S. (2009). Designing sustainable recovery network of end-of-life products using genetic algorithm. Resources, conservation and recycling53(10), 559-570.
  33. Amin, S. H., & Zhang, G. (2013). A multi-objective facility location model for closed-loop supply chain network under uncertain demand and return. Applied mathematical modelling37(6), 4165-4176.
  34. Nasiri, A., Mansory, A., & Mohammadi, N. (2022). Evaluating of effective factors on green supply chain management using statistical methods and SWARA approach. International journal of research in industrial engineering11(2), 165-187.
  35. Pishvaee, M. S., & Razmi, J. (2012). Environmental supply chain network design using multi-objective fuzzy mathematical programming. Applied mathematical modelling36(8), 3433-3446.
  36. Wang, Y., Zhu, X., Lu, T., & Jeeva, A. (2013). Eco-efficient based logistics network design in hybrid manufacturing/remanufacturing system in low-carbon economy. Journal of industrial engineering and management, 2013, 200-214.
  37. Pishvaee, M. S., Razmi, J., & Torabi, S. A. (2014). An accelerated Benders decomposition algorithm for sustainable supply chain network design under uncertainty: a case study of medical needle and syringe supply chain. Transportation research part E: logistics and transportation review67, 14-38.
  38. Eslamipoor, R., & Nobari, A. (2023). A reliable and sustainable design of supply chain in healthcare under uncertainty regarding environmental impacts. Journal of applied research on industrial engineering10(2), 256-272.
  39. Hamidieh, A., & Johari, A. (2022). Blood supply chain network design considering responsiveness and reliability in conditions of uncertainty using the lagrangian relaxation algorithm. International journal of research in industrial engineering11(2), 188-204.
  40. Zhalechian, M., Tavakkoli-Moghaddam, R., Zahiri, B., & Mohammadi, M. (2016). Sustainable design of a closed-loop location-routing-inventory supply chain network under mixed uncertainty. Transportation research part E: logistics and transportation review89, 182-214.
  41. Babazadeh, R., Razmi, J., Pishvaee, M. S., & Rabbani, M. (2017). A sustainable second-generation biodiesel supply chain network design problem under risk. Omega66, 258-277.
  42. Sahebjamnia, N., Fathollahi-Fard, A. M., & Hajiaghaei-Keshteli, M. (2018). Sustainable tire closed-loop supply chain network design: hybrid metaheuristic algorithms for large-scale networks. Journal of cleaner production196, 273-296.
  43. Sherafati, M., Bashiri, M., Tavakkoli-Moghaddam, R., & Pishvaee, M. S. (2019). Supply chain network design considering sustainable development paradigm: a case study in cable industry. Journal of cleaner production234, 366-380. https://pure.coventry.ac.uk/ws/portalfiles/portal/24567716/Binder6.pdf
  44. Habiba, U., Ripon, B. M., & Islam, M. D. (2021). Optimization of a green supply chain network: a case study in a pharmaceutical industry. International journal of research in industrial engineering10(3), 174-186.
  45. Gong, J., Mitchell, J. E., Krishnamurthy, A., & Wallace, W. A. (2014). An interdependent layered network model for a resilient supply chain. Omega, 46, 104-116.
  46. Hasani, A., & Khosrojerdi, A. (2016). Robust global supply chain network design under disruption and uncertainty considering resilience strategies: a parallel memetic algorithm for a real-life case study. Transportation research part E: logistics and transportation review87, 20-52. https://doi.org/10.1016/j.tre.2015.12.009
  47. Rezapour, S., Farahani, R. Z., & Pourakbar, M. (2017). Resilient supply chain network design under competition: a case study. European journal of operational research259(3), 1017-1035.
  48. Jabbarzadeh, A., Haughton, M., & Khosrojerdi, A. (2018). Closed-loop supply chain network design under disruption risks: a robust approach with real world application. Computers & industrial engineering116, 178-191.
  49. Hosseini-Motlagh, S. M., Samani, M. R. G., & Cheraghi, S. (2020). Robust and stable flexible blood supply chain network design under motivational initiatives. Socio-economic planning sciences70, 100725.
  50. Hasani, A., Mokhtari, H., & Fattahi, M. (2021). A multi-objective optimization approach for green and resilient supply chain network design: a real-life case study. Journal of cleaner production278, 123199.
  51. Sazvar, Z., Tafakkori, K., Oladzad, N., & Nayeri, S. (2021). A capacity planning approach for sustainable-resilient supply chain network design under uncertainty: a case study of vaccine supply chain. Computers & industrial engineering159, 107406.
  52. Vali-Siar, M. M., & Roghanian, E. (2022). Sustainable, resilient and responsive mixed supply chain network design under hybrid uncertainty with considering COVID-19 pandemic disruption. Sustainable production and consumption30, 278-300.
  53. Roshani, A., Gholamian, M. R., & Arabi, M. (2022). A two-stage stochastic programming approach to design a resilient pharmaceutical supply chain network: a case study of COVID-19. Journal of decisions and operations research. (In Persian). https://www.journal-dmor.ir/article_146557_9792c8ed75a5f9543a41105c8894e6fb.pdf?lang=en
  54. Mulvey, J. M., Vanderbei, R. J., & Zenios, S. A. (1995). Robust optimization of large-scale systems. Operations research43(2), 264-281.
  55. Yu, C. S., & Li, H. L. (2000). A robust optimization model for stochastic logistic problems. International journal of production economics64(1-3), 385-397.
  56. Pishvaee, M. S., & Torabi, S. A. (2010). A possibilistic programming approach for closed-loop supply chain network design under uncertainty. Fuzzy sets and systems161(20), 2668-2683.
  57. Jiménez, M., Arenas, M., Bilbao, A., & Rodrı, M. V. (2007). Linear programming with fuzzy parameters: an interactive method resolution. European journal of operational research177(3), 1599-1609.
  58. Parra, M. A., Terol, A. B., Gladish, B. P., & Urıa, M. R. (2005). Solving a multiobjective possibilistic problem through compromise programming. European journal of operational research164(3), 748-759.
  59. Torabi, S. A., & Hassini, E. (2008). An interactive possibilistic programming approach for multiple objective supply chain master planning. Fuzzy sets and systems159(2), 193-214.
  60. Smale, R., Hartley, M., Hepburn, C., Ward, J., & Grubb, M. (2006). The impact of CO2 emissions trading on firm profits and market prices. Climate policy6(1), 31-48.
  61. Grobler, F. & Minnitt, R. (1999). The increasing role of direct reducted iron in global steelmaking. Journal of the southern African institute of mining and metallurgy99(2), 111-116.
  62. Strezov, V., Evans, A., & Evans, T. (2013). Defining sustainability indicators of iron and steel production. Journal of cleaner production51, 66-70.
  63. McKinnon, A. C., & Piecyk, M. (2010). Measuring and managing CO2 emissions in European chemical transport. Heriot-Watt University. https://researchportal.hw.ac.uk/en/publications/3ce441ef-63ab-4277-86ea-4ad075a123da
  64. Vahdani, B., Tavakkoli-Moghaddam, R., Modarres, M., & Baboli, A. (2012). Reliable design of a forward/reverse logistics network under uncertainty: a robust-M/M/c queuing model. Transportation research part E: logistics and transportation review48(6), 1152-1168.