نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی لجستیک و زنجیره تامین، دانشکده مهندسی صنایع، دانشگاه علم و صنعت، تهران، ایران.

چکیده

هدف: با توجه به افزایش پیچیدگی‏‌های ناشی از عدم‏‌قطعیت و تاثیرات آن در شبکه‌‏های زنجیره تامین، بسیاری از محققین به استفاده از رویکردهای تقابلی با عدم‌‏قطعیت داده‌‏ها روی آورده‌‏اند. به علاوه، وقوع هرگونه اختلال در شبکه‌‏های توزیع، می‌تواند خسارت‌‏های جبران‏‌ناپذیری به بار بیاورد؛ بنابراین اتخاذ استراتژی‏‌های مناسب برای بالا بردن سطح تاب‏‌آوری شبکه زنجیره تامین به دنبال کاهش آثار مخرب ناشی از هرگونه اختلال امری مهم و ضروری به نظر می‏‌رسد.
روش‌شناسی پژوهش: در این مقاله، یک مدل ریاضی چندهدفه، چند دوره‌‏ای و سناریو محور ارایه شده است که در آن علاوه بر کمینه‏‌سازی دو هدف زمان تحویل و هزینه، به منظور افزایش تاب‏‌آوری شبکه، معیارهای منفی تاب‌‏آوری نیز کمینه می‌‏گردند. برای غلبه بر ماهیت غیرقطعی داده‌‏ها نیز از رویکرد برنامه‌‏ریزی تصادفی دو مرحله‌‏ای استفاده شده است. همچنین برای تبدیل مدل، به یک مدل تک‏‌هدفه، از برنامه‌‏ریزی آرمانی بهره گرفته شده است.
یافته‌ها: به منظور اثبات کاربردی بودن مدل، داده‏‌های واقعی یک مطالعه موردی در مشهد پیاده‌‏سازی شده است. در نهایت، بر اساس اعتبارسنجی و تحلیل حساسیت صورت گرفته، مدل غیرقطعی پیشنهادی از برتری مشهودی نسبت به مدل قطعی برخوردار است.
اصالت/ارزش افزوده علمی: این مقاله یک مدل ریاضی خطی چندهدفه را برای طراحی شبکه زنجیره تامین دارو تحت شرایط کووید-19 ارایه می‌کند که در آن دو شاخص زمان و تاب‏‌آوری به عنوان ابزارهای بهینه‌‏سازی به طور همزمان در نظر گرفته شده‏‌اند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

A two-stage stochastic programming approach to design a resilient pharmaceutical supply chain network: a case study of COVID-19

نویسندگان [English]

  • Alireza Roshani
  • Mohammad Reza Gholamian
  • Mahsa Arabi

Department of Logistics and Supply Chain, School of Industrial Engineering, Iran University of Science and technology (IUST), Tehran, Iran.

چکیده [English]

Purpose: Due to the increasing complexity of uncertainty and its impact on the supply chain network, many researchers have resorted to coping approaches with data uncertainty. In addition, the occurrence of any disruption in the supply chain networks can cause irreparable damage. Therefore, adopting appropriate strategies to increase the level of the supply chain network resilience toward any disruptive events seem to be necessary.
Methodology: In this paper, a multi-objective, multi-period, and scenario-based mathematical model is presented in which objective functions of delivery time and total network cost are minimized, and to increase network resilience, non-resilience measures are also minimized. Furthermore, a Two-Stage Stochastic Programming (TSSP) approach has been utilized to overcome the uncertain nature of the input parameters. Goal programming has also been used to transform the model into a single-objective one.
Findings: In order to prove the model's applicability, the real-world data of a case study of Mashhad has been implemented. Eventually, according to the validation and sensitivity analysis results, the proposed uncertain model has clear superiority over the deterministic model.
Originality/Value: This paper presents a multi-objective linear mathematical model for designing the Pharmaceutical Supply Chain (PSC) network under the COVID-19 situation. Two indicators of time and resilience as optimization tools have been considered simultaneously.

کلیدواژه‌ها [English]

  • Supply chain network design
  • Two-stage stochastic programming
  • Supply chain resilience
  • Pharmaceutical supply chain
  • COVID-19
  • Duran, S., Gutierrez, M. A., & Keskinocak, P. (2011). Pre-positioning of emergency items for CARE international. Interfaces, 41(3), 223–237.
  • Tofighi, S., Torabi, S. A., & Mansouri, S. A. (2016). Humanitarian logistics network design under mixed uncertainty. European journal of operational research, 250(1), 239-250.
  • Farnoosh, G., Alishiri, G., Hosseini Zijoud, S. R., Dorostkar, R., & Jalali Farahani A. (2020). Understanding the severe acute respiratory syndrome coronavirus 2 (sars-cov-2) and coronavirus disease (covid-19) based on available evidence - a narrative review. Journal of military medicine, 22(1), 1-11. (In Persian). DOI: 30491/JMM.22.1.1.
  • Aschwanden, C. (2021). Five reasons why COVID herd immunity is probably impossible. Nature, 591, 520-522. DOI: 1038/d41586-021-00728-2.
  • Ribeiro, J. P., & Barbosa-Povoa, A. (2018). Supply chain resilience: definitions and quantitative modelling approaches–a literature review. Computers & industrial engineering115, 109-122.
  • Suryawanshi, P., & Dutta, P. (2022). Optimization models for supply chains under risk, uncertainty, and resilience: A state-of-the-art review and future research directions. Transportation research part e: logistics and transportation review157, 102553. https://doi.org/10.1016/j.tre.2021.102553
  • Settanni, E., Harrington, T.S., & Srai, J.S. (2017). Pharmaceutical supply chain models: a synthesis from a systems view of operations research. Operations research perspectives, 4, 74-95.
  • Melnyk, S. A., Closs, D. J., Griffis, S. E., Zobel, C. W., & Macdonald, J. R. (2014). Understanding supply chain resilience. Supply chain management review, 18(1), 34-41. ttps://www.scmr.com/article/understanding_supply_chain_resilience
  • Sabouhi, F., Pishvaee, M. S., & Jabalameli, M. S. (2018). Resilient supply chain design under operational and disruption risks considering quantity discount: a case study of pharmaceutical supply chain. Computers & industrial engineering126, 657-672. https://doi.org/10.1016/j.cie.2018.10.001
  • Alikhani, R., Torabi, S.A., & Altay, N., (2021). Retail supply chain network design with concurrent resilience capabilities. International journal of production economics, 234, 108042. https://doi.org/10.1016/j.ijpe.2021.108042
  • Torabi, S. A., Baghersad, M., & Mansouri, S. A. (2015). Resilient supplier selection and order allocation under operational and disruption risks. Transportation research part e: logistics and transportation review79, 22-48. https://doi.org/10.1016/j.tre.2015.03.005
  • Kalantari, M., & Pishvaee, M. (2016). A robust possibilistic programming approach to drug supply chain master planning. Journal of industrial engineering research in production systems, 4(7), 49-67. (In Persian). https://www.sid.ir/paper/522089/fa
  • Kristianto, Y., Gunasekaran, A., Helo, P., & Hao, Y. (2014). A model of resilient supply chain network design: a two-stage programming with fuzzy shortest path. Expert systems with applications41(1), 39-49.
  • Salehi Sadghiani, N., Torabi, S. A., & Sahebjamnia, N., (2015). Retail supply chain network design under operational and disruption risks. Transportation research part e: logistics and transportation review, 75, 95–114.
  • Hasani, A., & Khosrojerdi, A. (2016). Robust global supply chain network design under disruption and uncertainty considering resilience strategies: a parallel memetic algorithm for a real-life case study. Transportation research part e: logistics and transportation review87, 20-52.
  • Behzadi, G., O'Sullivan, M. J., Olsen, T. L., Scrimgeour, F., & Zhang, A. (2017). Robust and resilient strategies for managing supply disruptions in an agribusiness supply chain. International journal of production economics,191, 207-220.
  • Fattahi, M., Govindan, K., & Keyvanshokooh, E. (2017). Responsive and resilient supply chain network design under operational and disruption risks with delivery lead-time sensitive customers. Transportation research part E: logistics and transportation review,101, 176-200.
  • Lücker, F., & Seifert, R. W. (2017). Building up resilience in a pharmaceutical supply chain through inventory, dual sourcing and agility capacity. Omega73, 114-124.
  • Sadeghi, Z., & Boyer Hasani, O. (2019). A multi-objective optimization mathematical model for design and planning of sustainable resilience supply chain under the risk of supply disruption. Journal of quality engineering and management, 9(3), 212-225. (In Persian). http://www.pqprc.ir/article_102756.html
  • Haeri, A., Hosseini‐Motlagh, S. M., Ghatreh Samani, M. R., & Rezaei, M. (2020). A mixed resilient‐efficient approach toward blood supply chain network design. International transactions in operational research27(4), 1962-2001.
  • Hosseini-Motlagh, S. M., Samani, M. R. G., & Saadi, F. A. (2020). A novel hybrid approach for synchronized development of sustainability and resiliency in the wheat network. Computers and electronics in agriculture168, 105095. https://doi.org/10.1016/j.compag.2019.105095
  • Mousavi Ahranjani, P., Ghaderi, S. F., Azadeh, A., & Babazadeh, R. (2020). Robust design of a sustainable and resilient bioethanol supply chain under operational and disruption risks. Clean technologies and environmental policy22, 119-151.
  • Savadkoohi, E., Mousazadeh, M., & Torabi, S. A. (2018). A possibilistic location-inventory model for multi-period perishable pharmaceutical supply chain network design. Chemical engineering research and design138, 490-505.
  • Zahiri, B., Jula, P., & Tavakkoli-Moghaddam, R., (2018). Design of a pharmaceutical supply chain network under uncertainty considering perishability and substitutability of products. Information sciences, 423, 257–283.
  • Diabat, A., Jabbarzadeh, A., & Khosrojerdi, A. (2019). A perishable product supply chain network design problem with reliability and disruption considerations. International journal of production economics212, 125-138.
  • Roshan, M., Tavakkoli-Moghaddam, R., & Rahimi, Y. (2019). A two-stage approach to agile pharmaceutical supply chain management with product substitutability in crises. Computers and chemical engineering, 127, 200–217.
  • Akbarpour, M., Torabi, S. A., & Ghavamifar, A. (2020). Designing an integrated pharmaceutical relief chain network under demand uncertainty. Transportation research part e: logistics and transportation review136, 101867. https://doi.org/10.1016/j.tre.2020.101867
  • Aghababaei, B., Pishvaee, M. S., & Barzinpour, F. (2022). A fuzzy bi-level programming approach to scarce drugs supply and ration planning problem under risk. Fuzzy sets and systems,434, 48-72. https://doi.org/10.1016/j.fss.2021.02.021
  • Goodarzian, F., Wamba, S. F., Mathiyazhagan, K., & Taghipour, A. (2021). A new bi-objective green medicine supply chain network design under fuzzy environment: hybrid metaheuristic algorithms. Computers & industrial engineering160, 107535. https://doi.org/10.1016/j.cie.2021.107535
  • Arabi, M., Yaghoubi, S., & Tajik, J. (2019). Algal biofuel supply chain network design with variable demand under alternative fuel price uncertainty: A case study. Computers & chemical engineering130, 106528. https://doi.org/10.1016/j.compchemeng.2019.106528
  • Zahiri, B., Zhuang, J., & Mohammadi, M. (2017). Toward an integrated sustainable-resilient supply chain: a pharmaceutical case study. Transportation research part e: logistics and transportation review103, 109-142.
  • Charnes, A., & Cooper, W. W. (1957). Management models and industrial applications of linear programming. Management science4(1), 38-91.
  • Tzeng, G. H., & Huang, J. J. (2019). Fuzzy multiple objective decision making. Chapman and Hall/CRC.
  • Ghafari, M., Kadivar, A., & Katzourakis, A. (2021). Excess deaths associated with the Iranian COVID-19 epidemic: a province-level analysis. International journal of infectious diseases107, 101-115.