نوع مقاله : مقاله پژوهشی - کاربردی

نویسندگان

1 گروه مهندسی صنایع، واحد لاهیجان، دانشگاه آزاد اسلامی، لاهیجان، ایران.

2 گروه ریاضی، واحد لاهیجان، دانشگاه آزاد اسلامی، لاهیجان، ایران.

10.22105/dmor.2021.294520.1442

چکیده

هدف: طراحی یک شبکه لجستیکی یک مسئله استراتژیکی و حیاتی است که بستر بهینه‌ای برای مدیریت مؤثر و کارآمد زنجیره تأمین فراهم می‌کند. بدین منظور در این مقاله یک شبکه زنجیره تأمین حلقه بسته پایدار چند رده‌ای، چندمحصولی و چند دوره‌ای و چندهدفه با در نظر گرفتن فناوری سیستم شناسایی فرکانس رادیویی طراحی‌شده است. این مدل به‌طور هم‌زمان به دنبال حداکثر کردن سود و مسئولیت اجتماعی شبکه زنجیره تأمین است، درحالی‌که تأخیر کل در زمان تحویل و آلودگی‌های زیست‌محیطی را به حداقل می‌رساند. همچنین چون مدل‌های قطعی برای فهم پیچیدگی‌های کاربردهای دنیای واقعی ناتوان هستند بنابراین در این مقاله به عدم قطعیت‌های سیستمی و محیطی نیز پرداخته‌شده است.
روش‌شناسی پژوهش: در این مطالعه برای مقابله با عدم قطعیت پارامترها از تکنیک بهینه‌سازی استوار تصادفی مبتنی بر سناریو و به دلیل چندهدفه بودن مدل و اعتبارسنجی و حل دقیق مدل در ابعاد کوچک از یک روش جدید بهینه‌سازی اپسیلون محدودیت تعمیم‌یافته قوی برای رسیدن به بهترین موازنه بین اهداف استفاده‌شده است. همچنین ازآنجایی‌که مسئله از کلاس Np-hard نیز است برای حل مدل در ابعاد بزرگ‌تر از دو الگوریتم NSGA-II و MOPSO استفاده گردید.
یافته ها: نتایج حاصل این مطالعه نشان‌دهنده این است که مدل پیشنهادی و رویکرد حل آن از کارآمدی قابل قبولی برخوردار می‌باشند.
اصالت/ارزش‌افزوده علمی: به‌طورکلی مدل پیشنهادی شامل فرمول‌بندی‌های ریاضی در حالت قطعی و استوار است که اجازه می‌دهد چندین ویژگی پیچیده ذکرشده در متن فوق به همراه در نظر گرفتن کانال‌های فروش مستقیم و غیرمستقیم و مراکز تعمیر و مشتریان ثانویه طرحی جدید از یک زنجیره تأمین حلقه بسته را ایجاد نماید که می‌تواند ابزاری عالی برای مدیران و متخصصان با کاربرد گسترده به‌ویژه از منظر استراتژیک باشد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Robust design of an agile sustainable closed-loop supply chain network with different sales channels

نویسندگان [English]

  • elham kouchaki tajani 1
  • Armin Ghane Kanafi 2
  • Maryam Daneshmand-Mehr 1
  • Ali-Asghar HoseinZadeh 2

1 Department of Industrial Engineering, Lahijan Branch, Islamic Azad University, Lahijan, Iran

2 Head of Department of Mathematics, Islamic Azad University, Lahijan Branch

چکیده [English]

Purpose: Designing a logistic network is a vital and strategic issue that provides the optimal platform for effective and useful management of supply chain. For this purpose, in this paper, a multi-echelon, multi-product, multi-period and multi-objective sustainable dual-channel closed-loop supply chain network has been designed taking into account the technology of RFID. Simultaneously this model seeks to maximize the profits and social responsibility of the supply chain network while it minimizes the whole delay in delivery time and environmental pollution. Also, because definitive models are incapable of understanding the complexities of real-world applications, so this paper also addresses systemic and environmental uncertainties.
Methodology: In this study, the scenario-based stochastic robust programming optimization technique is used to deal with the uncertainty of the parameters and to deal with the uncertainty of the parameters, and due to the multi-objective model and for validation and model exact solution in small dimensions of a new robust augmented ε‑constraint method (AUGMECON‑R) is used to achieve the best balance between the objectives. Also, since the problem is of np-hard class, two NSGA-II and MOPSO algorithms were used to solve the model in larger dimensions.
Findings: The results show that this model has acceptable efficiency that due to the uncertainty of some parameters.
Originality/Value: The proposed model includes mathematical formulas in a certain and robust state that allows the establishment of several complicated characteristics in the above text along with direct and indirect selling channels and repairing centers and secondary costumers create the new design of supply chain that can be supreme model for the managers and professionals with the wide application especially from strategic view.

کلیدواژه‌ها [English]

  • Closed-loop supply chain
  • Radio Frequency Identification (RFID)
  • robust optimization
  • Sales channels
Abdolazimi, O., Esfandarani, M. S., Salehi, M., & Shishebori, D. (2020). Robust design of a multi-objective closed-loop supply chain by integrating on-time delivery, cost, and environmental aspects, case study of a Tire Factory. Journal of cleaner production264, 121566. https://doi.org/10.1016/j.jclepro.2020.121566
Ahmed, W., & Sarkar, B. (2018). Impact of carbon emissions in a sustainable supply chain management for a second generation biofuel. Journal of cleaner production186, 807-820. https://doi.org/10.1016/j.jclepro.2018.02.289
Ashton, K. (1999). June 22. That’Internet of Things’ thing. RFID Journal. Retrieved from https://www.itrco.jp/libraries/RFIDjournal-That%20Internet%20of%20Things%20Thing.pdf
Atabaki, M. S., Mohammadi, M., & Naderi, B. (2020). New robust optimization models for closed-loop supply chain of durable products: towards a circular economy. Computers & industrial engineering146, 106520. https://doi.org/10.1016/j.cie.2020.106520
Behzadi, M., & Seifabrghy, M. (2018). Two-stage and robust stochastic optimization of closed-loop supply chain network under uncertainty. Journal of production and operations management9(2), 77-97. DOI: 10.22108/jpom.2017.92475
 Ben-Daya, M., Hassini, E., & Bahroun, Z. (2019). Internet of things and supply chain management: a literature review. International journal of production research57(15-16), 4719-4742. https://doi.org/10.1080/00207543.2017.1402140
Calatayud, A., Mangan, J., & Christopher, M. (2018). The self-thinking supply chain. Supply chain management: an international journal, 24(1), 22-38. https://doi.org/10.1108/SCM-03-2018-0136
Chanchaichujit, J., Balasubramanian, S., & Charmaine, N. S. M. (2020). A literature review on the benefit-drivers of RFID implementation in supply chains and its impact on organizational competitive advantage. Cogent business & management7(1), 1818408. https://doi.org/10.1080/23311975.2020.1818408
Chen, C., Zhang, G., & Xia, Y. (2019). Remanufacturing network design for dual-channel closed-loop supply chain. Procedia CIRP83, 479-484. https://doi.org/10.1016/j.procir.2019.04.132
Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation6(2), 182-197. DOI: 10.1109/4235.996017
Eberhart, R. C., & Kennedy, J. (1995). A new optimizer using particle swarm theory. Proceedings of the sixth international symposium on micro machine and human science. IEEE. DOI:10.1109/MHS.1995.494215  
Fallahpour, A., Nayeri, S., Sheikhalishahi, M., Wong, K. Y., Tian, G., & Fathollahi-Fard, A. M. (2021). A hyper-hybrid fuzzy decision-making framework for the sustainable-resilient supplier selection problem: a case study of Malaysian Palm oil industry. Environmental science and pollution research, 1-21. https://doi.org/10.1007/s11356-021-12491-y
Fallahpour, A., Wong, K. Y., Rajoo, S., Fathollahi-Fard, A. M., Antucheviciene, J., & Nayeri, S. (2021). An integrated approach for a sustainable supplier selection based on Industry 4.0 concept. Environmental science and pollution research, 1-19. https://doi.org/10.1007/s11356-021-17445-y
Fathollahi-Fard, A. M., Ahmadi, A., & Al-e-Hashem, S. M. (2020). Sustainable closed-loop supply chain network for an integrated water supply and wastewater collection system under uncertainty. Journal of environmental management275, 111277. https://doi.org/10.1016/j.jenvman.2020.111277
Fathollahi-Fard, A. M., Dulebenets, M. A., Hajiaghaei–Keshteli, M., Tavakkoli-Moghaddam, R., Safaeian, M., & Mirzahosseinian, H. (2021). Two hybrid meta-heuristic algorithms for a dual-channel closed-loop supply chain network design problem in the tire industry under uncertainty. Advanced engineering informatics50, 101418. https://doi.org/10.1016/j.aei.2021.101418
Ghahremani Nahr, J. (2020). Improvement the efficiency and efficiency of the closed loop supply chain: whale optimization algorithm and novel priority-based encoding approach. Journal of decisions and operations research4(4), 299-315. (In Persian). DOI: 10.22105/dmor.2020.206930.1132
Ghahremani-Nahr, J., Nozari, H., & Najafi, S. E. (2020). Design a green closed loop supply chain network by considering discount under uncertainty. Journal of applied research on industrial engineering7(3), 238-266. DOI: 10.22105/jarie.2020.251240.1198
Gholizadeh, H., & Fazlollahtabar, H. (2020). Robust optimization and modified genetic algorithm for a closed loop green supply chain under uncertainty: case study in melting industry. Computers & industrial engineering147, 106653. https://doi.org/10.1016/j.cie.2020.106653
Gholizadeh, H., Tajdin, A., & Javadian, N. (2020). A closed-loop supply chain robust optimization for disposable appliances. Neural computing and applications32(8), 3967-3985. https://doi.org/10.1007/s00521-018-3847-9 Gholizadeh, H., Tajdin, A., Javadian, N. J. N. C., & Applications. (2018). A closed-loop supply chain robust optimization for disposable appliances, Neural Comput & Applic, 32, 3967–3985. https://doi.org/10.1007/s00521-018-3847-9
Hajipour, V., Tavana, M., Di Caprio, D., Akhgar, M., & Jabbari, Y. (2019). An optimization model for traceable closed-loop supply chain networks. Applied mathematical modelling71, 673-699. https://doi.org/10.1016/j.apm.2019.03.007
Ho, C. J. (1989). Evaluating the impact of operating environments on MRP system nervousness. The international journal of production research27(7), 1115-1135. https://doi.org/10.1080/00207548908942611
Huang, S. M., & Su, J. C. (2013). Impact of product proliferation on the reverse supply chain. Omega41(3), 626-639. https://doi.org/10.1016/j.omega.2012.08.003
Jolai, F., Asefi, H., Rabiee, M., & Ramezani, P. (2013). Bi-objective simulated annealing approaches for no-wait two-stage flexible flow shop scheduling problem. Scientia iranica20(3), 861-872. https://doi.org/10.1016/j.scient.2012.10.044
Kaoud, E., Abdel-Aal, M. A., Sakaguchi, T., & Uchiyama, N. (2020). Design and optimization of the dual-channel closed loop supply chain with e-commerce. Sustainability12(23), 10117. https://doi.org/10.3390/su122310117
Kim, T., & Glock, C. H. (2014). On the use of RFID in the management of reusable containers in closed-loop supply chains under stochastic container return quantities. Transportation research part E: logistics and transportation review64, 12-27. https://doi.org/10.1016/j.tre.2014.01.011
Mahtab, Z., Azeem, A., Ali, S. M., Paul, S. K., & Fathollahi-Fard, A. M. (2021). Multi-objective robust-stochastic optimisation of relief goods distribution under uncertainty: a real-life case study. International journal of systems science: operations & logistics, 1-22. https://doi.org/10.1080/23302674.2021.1879305
Marzband, A. (2020). Precise services and supply chain prioritization in manufacturing companies using cost analysis provided in a fuzzy environment. Journal of fuzzy extension and applications1(1), 42-59. 41-56. DOI: 10.22105/jfea.2020.248187.1006
Mavrotas, G. (2009). Effective implementation of the ε-constraint method in multi-objective mathematical programming problems. Applied mathematics and computation213(2), 455-465. https://doi.org/10.1016/j.amc.2009.03.037
Melo, M. T., Nickel, S., & Saldanha-Da-Gama, F. (2009). Facility location and supply chain management–A review. European journal of operational research196(2), 401-412. https://doi.org/10.1016/j.ejor.2008.05.007
Mohammadi, M., & Soleimani, H. (2020). Investigating open loop and closed-loop supply chain under uncertainty (case study: Iran teransfo company). Journal of industrial management perspective, 10 (38), 33-53. DOI: 10.52547/JIMP.10.2.33
Mojtahedi, M., Fathollahi-Fard, A. M., Tavakkoli-Moghaddam, R., & Newton, S. (2021). Sustainable vehicle routing problem for coordinated solid waste management. Journal of industrial information integration23, 100220. https://doi.org/10.1016/j.jii.2021.100220
Mulvey, J. M., Vanderbei, R. J., & Zenios, S. A. (1995). Robust optimization of large-scale systems. Operations research43(2), 264-281. https://doi.org/10.1287/opre.43.2.264
Nikas, A., Fountoulakis, A., Forouli, A., & Doukas, H. (2020). A robust augmented ε-constraint method (AUGMECON-R) for finding exact solutions of multi-objective linear programming problems. Operational research, 1-42. https://doi.org/10.1007/s12351-020-00574-6
Nozari, H., Fallah, M., & Szmelter-Jarosz, A. (2021). A conceptual framework of green smart IoT-based supply chain management. International journal of research in industrial engineering10(1), 22-34. DOI: 10.22105/riej.2021.274859.1189
Pasha, J., Dulebenets, M. A., Fathollahi-Fard, A. M., Tian, G., Lau, Y. Y., Singh, P., & Liang, B. (2021). An integrated optimization method for tactical-level planning in liner shipping with heterogeneous ship fleet and environmental considerations. Advanced engineering informatics48, 101299. https://doi.org/10.1016/j.aei.2021.101299
Paydar, M. M., Babaveisi, V., & Safaei, A. S. (2017). An engine oil closed-loop supply chain design considering collection risk. Computers & chemical engineering104, 38-55. https://doi.org/10.1016/j.compchemeng.2017.04.005
Paydar, M. M., Yousefi Babadi, A., & Davoodi, A.  (2015). Designing an integrated direct and reverse logistic robust optimization model under uncertainty. Iranian journal of supply chain management, 17(47), 4-15. (In Persian). https://scmj.ihu.ac.ir/article_203553.html?lang=fa
Rahmani, D., Abadi, M. Q. H., & Hosseininezhad, S. J. (2020). Joint decision on product greenness strategies and pricing in a dual-channel supply chain: a robust possibilistic approach. Journal of cleaner production256, 120437.
Ramezani, M., Kimiagari, A. M., Karimi, B., & Hejazi, T. H. (2014). Closed-loop supply chain network design under a fuzzy environment. Knowledge-based systems59, 108-120. https://doi.org/10.1016/j.knosys.2014.01.016
Ranjbar, Y., & Sahebi, H. (2020). The pricing and collection decisions in the closed-loop supply chain with dual competitive recycling channels under different channel leadership. Journal of industrial engineering research in production systems7(15), 377-393. DOI: 10.22084/ier.2020.19410.1865
Ross, D. F., Weston, F. S., & Stephen, W. (2010). Introduction to supply chain management technologies. Crc Press.
Ruimin, M. A., Lifei, Y. A. O., Maozhu, J. I. N., Peiyu, R. E. N., & Zhihan, L. V. (2016). Robust environmental closed-loop supply chain design under uncertainty. Chaos, solitons & fractals89, 195-202. https://doi.org/10.1016/j.chaos.2015.10.028
Safaei, A. S., Roozbeh, A., & Paydar, M. M. (2017). A robust optimization model for the design of a cardboard closed-loop supply chain. Journal of cleaner production166, 1154-1168. https://doi.org/10.1016/j.jclepro.2017.08.085
Saffari, H., Makui, A., Mahmoodian, V., & Pishvaee, M. S. (2015). Multi-objective robust optimization model for social responsible closed-loop supply chain solved by non-dominated sorting genetic algorithm. Journal of industrial and systems engineering8(3), 42-58.
Samuel, C. N., Venkatadri, U., Diallo, C., & Khatab, A. (2020). Robust closed-loop supply chain design with presorting, return quality and carbon emission considerations. Journal of cleaner production247, 119086. https://doi.org/10.1016/j.jclepro.2019.119086
Theophilus, O., Dulebenets, M. A., Pasha, J., Lau, Y. Y., Fathollahi-Fard, A. M., & Mazaheri, A. (2021). Truck scheduling optimization at a cold-chain cross-docking terminal with product perishability considerations. Computers & industrial engineering156, 107240. https://doi.org/10.1016/j.cie.2021.107240
Zahedi, A., Salehi-Amiri, A., Smith, N. R., & Hajiaghaei-Keshteli, M. (2021). Utilizing IoT to design a relief supply chain network for the SARS-COV-2 pandemic. Applied soft computing104, 107210. https://doi.org/10.1016/j.asoc.2021.107210