نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مدیریت صنعتی، دانشکده مدیریت و حسابداری، دانشگاه بوعلی سینا، همدان، ایران.

2 گروه مدیریت صنعتی، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران.

10.22105/dmor.2021.270180.1307

چکیده

هدف:هدف اصلی از این پژوهش، شناسایی و استخراج شاخص‌های کلیدی عملکرد در لجستیک بشردوستانه، ارزیابی شاخص‌ها و تبیین ارتباط میان آن‌ها با بکارگیری رویکرد تحلیل مسیر و تکنیک‌های تصمیم‌گیری دیمتل فازی و سوارا و ترسیم طرح کلی فرصت‌های پژوهشی آینده سنجش عملکرد در لجستیک بشردوستانه می‌باشد.

روش‌شناسی پژوهش:پژوهش حاضر از نظر هدف، کاربردی و از نظر جمع‌آوری داده‌ها، پیمایشی- توصیفی می‌باشد. جامعه‌ی آماری این پژوهش را خبرگان، مدیران و متخصصان سازمان‌های امداد و نجات کشور در زمینه‌ی مسائل مرتبط و درگیر در سیستم زنجیره تأمین و لجستیک بشردوستانه و تقریباً 90 نفر تشکیل می‌دهند که سعی شده با انتخاب یک نمونه‌ی قابل‌قبول و قابل تعمیم از خبرگان، پرسشنامه‌ها به صورت تصادفی ساده، توزیع، و جمع‌آوری شوند.

یافته‌ها:یافته نهایی تحلیل روابط نشان داد که "زمان اهداء تا تحویل" از نظر تأثیرگذاری بر دیگر شاخص‌ها به عنوان تاثیرگذارترین شاخص می‌باشد. نهایتاً با عنایت به حساسیت رتبه‌بندی این شاخص‌ها از نظر اهمیت، از نظرات 20 خبره و متخصص و تکنیک تصمیم‌گیری سوارا استفاده شد. خروجی نهایی این تکنیک نشان از استخراج شاخص عملکردی چهارم یعنی "دقت ارزیابی شامل: سرعت و دقت اهدای متعهد و اقلام امدادی تحویل‌داده‌شده به ذینفعان و چگونگی ارزیابی نیاز ذینفعان توسط کارکنان" با بیشترین وزن در رتبه اول به عنوان مهم‌ترین شاخص عملکردی لجستیک بشردوستانه و شاخص عملکردی دوم یعنی "زمان اهداء شامل: زمان تحویل اقلام امدادی در کشور مقصد پس از یک اهداء و خاطرجمعی از اهداء آن" در رتبه آخر اهمیت دارد.

اصالت/ارزش افزوده علمی:در این پژوهش به ارزیابی و رتبه‌بندی شاخص‌های عملکردی در لجستیک بشردوستانه با بکارگیری رویکرد ترکیبی تحلیل مسیر و تکنیک‌های تصمیم‌گیری (دیمتل فازی و سوارا) پرداخته شد و بر اساس نتایج پژوهش، پیشنهادهای اجرایی و پژوهشی ارائه گردید.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Evaluation and ranking of performance indicators in humanitarian logistics using path analysis, fuzzy DEMATEL and SWARA

نویسندگان [English]

  • Mehdi Ajalli 1
  • Nima Saberifard 2
  • Babak Zinati 2

1 Department of Management, Faculty of Managemen and Accounting, Bu-Ali Sina University, Hamedan, Iran.

2 Department of Industrial Management, Rasht Branch, Islamic Azad University, Rasht, Iran.

چکیده [English]

Purpose: Performance measurement in humanitarian logistics is considered as one of the basic elements of successful humanitarian operations at operational, tactical and strategic levels. The main purpose of this research is to identify and to extract key performance indicators in humanitarian logistics, evaluating the indicators and explaining the relationship between them using path analysis approach and decision-making techniques of Fuzzy DEMATEL and SWARA and outline future research opportunities to measure performance in humanitarian logistics.
Methodology: Performance measurement in humanitarian logistics is considered as one of the basic elements of successful humanitarian operations at operational, tactical and strategic levels. The main purpose of this research is to identify and to extract key performance indicators in humanitarian logistics, evaluating the indicators and explaining the relationship between them using path analysis approach and decision-making techniques of Fuzzy DEMATEL and SWARA and outline future research opportunities to measure performance in humanitarian logistics.
Findings: The final finding of relationship analysis showed that "donation to delivery time" is the most influential indicator in terms of influencing other indicators. Finally, considering the sensitivity of ranking these indicators in terms of importance, the opinions of 20 experts and decision-making techniques SWARA used. The final output of this technique indicates the extraction of the fourth functional index i.e. "evaluation accuracy includes: speed and accuracy of committed donation and relief items delivered to stakeholders and how to assess the needs of stakeholders by employees" with the highest weight in the first rank as the most important functional indicator of humanitarian logistics and the second functional index i.e. "donation time includes "The delivery time of relief items in the country of destination after a donation and the collective remembrance of the donation" is important in the last rank.
Originality/Value: In this study, performance indicators in humanitarian logistics were evaluated and ranked using a combined approach of path analysis and decision-making techniques (fuzzy DEMATEL and SWARA) and based on the research results, executive and research proposals were presented.

کلیدواژه‌ها [English]

  • Performance Indicators
  • Humanitarian logistics
  • Disasters
  • path analysis
  • fuzzy Dematel
  • SWARA
Ajalli, M., Saberifard, N., & Zinati, B. (2021). Identification and ranking of the effective behavioural factors in successful performance of green supply chain management. Logistics thought scientific publication, 20(76), 93-115. (In Persian). http://lot.jrl.police.ir/article_95952.html?lang=en
Arzu Akyuz, G., & Erman Erkan, T. (2010). Supply chain performance measurement: a literature review. International journal of production research48(17), 5137-5155. https://doi.org/10.1080/00207540903089536
Barton, N. I. M. (2000). Logistic Support to humanitarian aid operations: logistic solutions to food security. MSc defence logistics management, (2).
Beamon, B. M. (1999). Measuring supply chain performance. International journal of operations & production management, 19(3), 275-292. https://doi.org/10.1108/01443579910249714
Beamon, B. M., & Balcik, B. (2008). Performance measurement in humanitarian relief chains. International journal of public sector management, 21(1), 4-25. https://doi.org/10.1108/09513550810846087
Beamon, B. M., & Kotleba, S. A. (2006). Inventory management support systems for emergency humanitarian relief operations in South Sudan. The international journal of logistics management, 17(2), 187-212. https://doi.org/10.1108/09574090610689952
Blecken, A. (2010). Humanitarian logistics: modelling supply chain processes of humanitarian organisations (Vol. 18). Haupt Verlag AG.
Blecken, A., Hellingrath, B., Dangelmaier, W., & Schulz, S. F. (2009). A humanitarian supply chain process reference model. International journal of services technology and management12(4), 391-413.
Boonmee, C., Arimura, M., & Asada, T. (2017). Facility location optimization model for emergency humanitarian logistics. International journal of disaster risk reduction24, 485-498. https://doi.org/10.1016/j.ijdrr.2017.01.017
Cassidy, W. B. (2003). Logistics lifeline. Traffic world, 267(17), 8-9. https://trid.trb.org/view/602997
Charles, A., Lauras, M., Van Wassenhove, L. N., & Dupont, L. (2016). Designing an efficient humanitarian supply network. Journal of operations management47-48, 58-70. https://doi.org/10.1016/j.jom.2016.05.012
Chingono, T., & Mbohwa, C. (2016). Information technologies for humanitarian logistics and supply chain management in Zimbabwe. Proceedings of the international conference on industrial engineering and operations management Detroit (pp. 1038-1046). Michigan, USA.
Chow, G., Heaver, T. D., & Henriksson, L. E. (1994). Logistics performance: definition and measurement. International journal of physical distribution & logistics management, 24(1), 17-28. https://doi.org/10.1108/09600039410055981
da Costa, S. R. A., Campos, V. B. G., & de Mello Bandeira, R. A. (2012). Supply chains in humanitarian operations: cases and analysis. Procedia-social and behavioral sciences54, 598-607. https://doi.org/10.1016/j.sbspro.2012.09.777
Davidson, A. L. (2006). Key performance indicators in humanitarian logistics (Doctoral dissertation, Massachusetts Institute of Technology). Retrieved from https://dspace.mit.edu/handle/1721.1/35540
Dufour, É., Laporte, G., Paquette, J., & Rancourt, M. È. (2018). Logistics service network design for humanitarian response in East Africa. Omega74, 1-14. https://doi.org/10.1016/j.omega.2017.01.002
Fathi, M., Aghaei, M., Maleki, M., Kermajani, Z. (2019). Providing a framework for identifying and ranking barriers to implementation of the humanitarian supply chain using the D-ANP technique. Iranian journal of supply chain management, 21(63), 63-75. (In Persian). https://scmj.ihu.ac.ir/article_204897.html
Fornell, C., & Larcker, D. F. (1981). Structural equation models with unobservable variables and measurement error: algebra and statistics. Journal of marketing research, 18(3), 382-388. https://doi.org/10.2307/3150980
Forslund, H., & Jonsson, P. (2007). Dyadic integration of the performance management process: a delivery service case study. International journal of physical distribution & logistics management, 37(7), 546-567. https://doi.org/10.1108/09600030710776473
Giannakis, M. (2007). Performance measurement of supplier relationships. Supply chain management: an international Journal, 12(6), 400-411. https://doi.org/10.1108/13598540710826335
Gleason, J. M., & Barnum, D. T. (1982). Toward valid measures of public sector productivity: performance measures in urban transit. Management science28(4), 379-386. https://doi.org/10.1287/mnsc.28.4.379
Gopal, P. R. C., & Thakkar, J. (2012). A review on supply chain performance measures and metrics: 2000‐2011. International journal of productivity and performance management, 61(5), 518-547. https://doi.org/10.1108/17410401211232957
Gösling, H., & Geldermann, J. (2014). A framework to compare OR models for humanitarian logistics. Procedia engineering78, 22-28. https://doi.org/10.1016/j.proeng.2014.07.034
Guha-Sapir, D., Vos, F., Below, R., & Ponserre, S. (2012). Annual disaster statistical review 2011: the numbers and trends. Retrieved from https://www.preventionweb.net/publication/annual-disaster-statistical-review-2010-numbers-and-trends
Gunasekaran, A., Patel, C., & McGaughey, R. E. (2004). A framework for supply chain performance measurement. International journal of production economics87(3), 333-347. https://doi.org/10.1016/j.ijpe.2003.08.003
Gutierrez, M. T. E., & Mutuc, J. E. S. (2018). A model for humanitarian supply chain: an operation research approach. Procedia engineering212, 659-666. https://doi.org/10.1016/j.proeng.2018.01.085
Haghi, M., & Fatemi Ghomi, S. M. T., & joulay, F. (2017). A humanitarian logistics modelforlocation-routing problem under demand and resource uncertainty. 13th international conferenceon industrial engineering (pp. 2-11). University of science and technology, Mazandran, Iran. https://www.sid.ir/fa/seminar/ViewPaper.aspx?ID=76824
Huang, S. H., Sheoran, S. K., & Keskar, H. (2005). Computer-assisted supply chain configuration based on supply chain operations reference (SCOR) model. Computers & industrial engineering48(2), 377-394. https://doi.org/10.1016/j.cie.2005.01.001
Jahre, M. & Heigh, I. (2008). Does failure the current constrains in Funding promote failure in humanitarian supply chains? International journal supply chain forum, 9(2), 44-45. https://doi.org/10.1080/16258312.2008.11517198
Kaplan, R. S. (1990). Measures for manufacturing excellence (Harvard business school series on accounting and control). Harvard Business Review Press.
Kaplan, R. S., & Norton, D. P. (2005). The balanced scorecard: measures that drive performance. Harvard business review83(7), 71-79.
Keršuliene, V., Zavadskas, E. K., & Turskis, Z. (2010). Selection of rational dispute resolution method by applying new step‐wise weight assessment ratio analysis (SWARA). Journal of business economics and management11(2), 243-258.
Lai, K. H., Ngai, E. W., & Cheng, T. C. E. (2002). Measures for evaluating supply chain performance in transport logistics. Transportation research part E: logistics and transportation review38(6), 439-456. https://doi.org/10.1016/S1366-5545(02)00019-4
Lapide, L. (2000). What about measuring supply chain performance? Achieving supply chain excellence through technology2(2), 287-297.
Lin, C. J., & Wu, W. W. (2008). A causal analytical method for group decision-making under fuzzy environment. Expert systems with applications34(1), 205-213. https://doi.org/10.1016/j.eswa.2006.08.012
Liu, H. C., You, J. X., Lu, C., & Chen, Y. Z. (2015). Evaluating health-care waste treatment technologies using a hybrid multi-criteria decision making model. Renewable and sustainable energy reviews41, 932-942. https://doi.org/10.1016/j.rser.2014.08.061
Long, D. (1997). Logistics for disaster relief: engineering on the run. IIE solutions29(6), 26-30.
Maharjan, R., & Hanaoka, S. (2017). Warehouse location determination for humanitarian relief distribution in Nepal. Transportation research procedia25, 1151-1163. https://doi.org/10.1016/j.trpro.2017.05.128
McLachlin, R., Larson, P. D., & Khan, S. (2009). Not‐for‐profit supply chains in interrupted environments: the case of a faith‐based humanitarian relief organisation. Management research news, 32(11), 1050-1064. https://doi.org/10.1108/01409170910998282
Mentzer, J. T., & Konrad, B. P. (1991). An efficiency/effectiveness approach to logistics performance analysis. Journal of business logistics12(1), 33. https://www.proquest.com/openview/8ceb18e618b199b3e309fbdb721c07e6/1?pq-origsite=gscholar&cbl=36584
Moore, D. M., & Antill, P. D. (2000). British Army logistics and contractors on the battlefield. The RUSI journal145(5), 46-52.
Mozaffari, M. M., & Ajalli, M. (2018). Critical success factors for information technology implementation in humanitarian supply chain management. IT management studies6(23), 5-32. (In Persian). DOI: 10.22054/ims.2018.8850
Neely, A., Gregory, M., & Platts, K. (1995). Performance measurement system design: a literature review and research agenda. International journal of operations & production management, 15(4), 80-116. https://doi.org/10.1108/01443579510083622
Oloruntoba, R. (2005). A wave of destruction and the waves of relief: issues, challenges and strategies. Disaster prevention and management: an international journal, 14(4), 506-521. https://doi.org/10.1108/09653560510618348
Oloruntoba, R., & Gray, R. (2006). Humanitarian aid: an agile supply chain? Supply chain management: an international journal, 11(2), 115-120. https://doi.org/10.1108/13598540610652492
Sadeghi Moghadam, M. R., Norouzian Reykandeh, J., & Ghasemi, R. (2017). Explanation of the importance-performance dimensions and components of humanitarian supply chain in post-disaster. Organizational resources management researchs7(3), 157-176. (In Persian). https://ormr.modares.ac.ir/index.php?slc_lang=en&sid=28
Safari, H., & Jalali, R. (2020). Presenting a multi-objective model based on quality function deployment for choosing effectiveness strategies in the humanitarian supply chain. Industrial management journal12(3), 462-484. (In Persian). DOI: 10.22059/imj.2020.296705.1007712
Salehi, E., Jazi, B., & Khani, N. (2016). Identifying and prioritizing of the factors affecting the success of the humanitarian supply chain. Quarterly scientific journal of rescue and relief8(3), 16-26. (In Persian). http://jorar.ir/browse.php?a_id=369&sid=1&slc_lang=fa
Scarpin, M. R. S., & de Oliveira Silva, R. (2014). Humanitarian logistics: empirical evidences from a natural disaster. Procedia engineering78, 102-111. https://doi.org/10.1016/j.proeng.2014.07.045
Schumann-Bölsche, D. (2018). Information technology in humanitarian logistics and supply chain management. In The Palgrave handbook of humanitarian logistics and supply chain management (pp. 567-590). Palgrave Macmillan, London. https://doi.org/10.1057/978-1-137-59099-2_19   
Schumann-Bölsche D. (2018). Information technology in humanitarian logistics and supply chain management. In Kovács G., Spens K., Moshtari M. (Eds.) The palgrave handbook of humanitarian logistics and supply chain management. Palgrave Macmillan, London. https://doi.org/10.1057/978-1-137-59099-2_19
Shahraki Moghadam, S., Sadeh, E., & Aminisabegh, Z. (2021). Identifying relationships among components of logistic relief assessment in the humanitarian supply chain with fuzzy DEMATEL approach. Journal of natural environmental hazards10(28), 67-84. (In Persian). DOI: 10.22111/jneh.2020.33697.1641
Simatupang, T. M., & Sridharan, R. (2005). The collaboration index: a measure for supply chain collaboration. International journal of physical distribution & logistics management, 35(1), 44-62. https://doi.org/10.1108/09600030510577421
Sink, D. S., Tuttle, T. C., & DeVries, S. J. (1984). Productivity measurement and evaluation: what is available? National productivity review3(3), 265-287.
Tatham, P., & Houghton, L. (2011b). The wicked problem of humanitarian logistics and disaster relief aid. Journal of humanitarian logistics and supply chain management, 1(1), 15-31. https://doi.org/10.1108/20426741111122394
Tatham, P., & Hughes, K. (2011a). Humanitarian logistics metrics: where we are and how we might improve. In Humanitarian logistics: meeting the challenge of preparing for and responding to disasters (pp. 65-84). Kogan Page.
Thomas, A. S., & Kopczak, L. (2007). Life-saving supply chains—challenges and the path forward‖ in HL Lee and CY Lee (Eds.) Building supply chain excellence in emerging economies (pp. 93-11). Springer Science & Business Media, New York.
Thomas, A. (2003). Humanitarian logistics: enabling disaster response. Fritz Institute.
Van Heeringen, B. B. (2010). Risk management in regional humanitarian relief operations (Master's Thesis, Massachusetts Institute of Technology). Retrieved from https://dspace.mit.edu/bitstream/handle/1721.1/8035/52733810-MIT.pdf;sequence=2   
Van Wassenhove, L. (2006a). Blackett memorial lecturet humanitarian aid logistics: supply chain. Journal of the operational research society57(5), 475-489.
Van Wassenhove, L. N. (2006b). Humanitarian aid logistics: supply chain management in high gear. Journal of the operational research society57(5), 475-489. https://doi.org/10.1057/palgrave.jors.2602125
Widera, A., & Hellingrath, B. (2011). Performance measurement systems for humanitarian logistics. The 23rd annual NOFOMA conference (pp. 1327-1342). Harstad, Norway. Nordic Logistics Research Network
Zhang, W., Cao, K., Liu, S., & Huang, B. (2016). A multi-objective optimization approach for health-care facility location-allocation problems in highly developed cities such as Hong Kong. Computers, environment and urban systems59, 220-230. https://doi.org/10.1016/j.compenvurbsys.2016.07.001
Zolfani, S. H., Aghdaie, M. H., Derakhti, A., Zavadskas, E. K., & Varzandeh, M. H. M. (2013). Decision making on business issues with foresight perspective; an application of new hybrid MCDM model in shopping mall locating. Expert systems with applications40(17), 7111-7121. https://doi.org/10.1016/j.eswa.2013.06.040