نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مدیریت فناوری، دانشکده مدیریت و اقتصاد، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.

2 گروه مدیریت فناوری، دانشکده مدیریت و اقتصاد، واحد علوم وتحقیقات،دانشگاه آزاد اسلامی، تهران، ایران.

3 گروه مدیریت صنعتی، دانشکده مدیریت و اقتصاد، واحدعلوم وتحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.

4 گروه مدیریت صنعتی، واحد تهران غرب، دانشگاه آزاد اسلامی، تهران، ایران.

10.22105/dmor.2021.277153.1338

چکیده

هدف: پژوهش پیش روی به دنبال شناسایی ساختار، نحوه تعاملات آن‌ها و بررسی عواملی است که میزان باز بودن مرزهای زیست‌بوم تحقیق و توسعه باز را نشان دهد. بدین منظور، حوزه نانو فناوری ایران به‌عنوان حوزه موردمطالعه انتخاب‌شده است.
روش‌شناسی پژوهش: گردآوری داده‌های تحقیق از طریق مطالعات کتابخانه‌ای (مراجعه به اسناد موجود و مطالعه تحقیقات پیشین)، مصاحبه باز و پرسشنامه‌های نیمه ساختاریافته انجام‌شده است. جامعه آماری ۱۵ نفره از طریق روش قضاوتی-هدفمند انتخاب‌شده‌اند که شامل: خبرگان دانشگاهی (اساتید سیاست‌های تحقیق و توسعه)، مدیران (بنگاه‌های دارای گواهینامه نانومقیاس) و سیاست‌گذاران در حوزه نانو فناوری (ستاد ویژه نانو فناوری)‌ است. داده‌های کیفیِ به‌دست‌آمده از مصاحبه با خبرگان از روش نظریه داده بنیاد در نرم‌افزار اطلس‌تی‌آی، روابط متقابل بین عوامل از روش دیمتل فازی در نرم‌افزار اکسل و انتخاب بهترین گزینه و رتبه‌بندی زیرمعیارهای مؤثر در پایش مرزهای زیست‌بوم از روش تحلیل شبکه با رویکرد دیمتل فازی در نرم‌افزار سوپردسیژن مورد تحلیل قرارگرفته است.
یافته‎ ها: نتایج این مطالعه نشان می‌دهد که ساختار زیست‌بوم تحقیق و توسعه در حوزه نانو فناوری ایران دارای بُعد زیست‌بومی، متشکل از زیر بوم‌های: منابع انسانی، زیرساخت، منابع مالی و حکمرانی و بُعد عملکردی، متشکل از تجاری‌سازی، تولیدات علمی و ثبت اختراع است. همچنین بهترین گزینه در پایش مرزهای تحقیق و توسعه باز در حوزه نانو فناوری بُعد عملکردی و زیرمعیار تجاری‌سازی، دارای بیشترین وزن در پایش را دارا است.
اصالت/ارزش افزوده علمی: علاوه بر آنکه به سیاست‌گذاران این امکان را می‌دهد تا سیاست‌ها و تصمیمات اتخاذشده در طول زمان را در این حوزه مورد ارزیابی و اندازه‌گیری قرار دهند، به مدیران بنگاه‌ها نیز کمک می‌نماید تا منابع و جریان‌های دانشی و فناورانه خود را به‌منظور یادگیری، همکاری و انتقال از بنگاه‌های بیرونی و بالعکس مدیریت نمایند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

A mixed approach of open R&D ecosystem case study: Iran`s nanotechnology

نویسندگان [English]

  • Pourya Abbasi 1
  • Reza Radfar 2
  • Abbas Toloei Eshlaghi 3
  • Nazanin Pilehvari Salmasi 4

1 Department of Technology Management, Faculty of Management and Economy, Science and Research Branch, Islamic Azad University, Tehran, Iran.

2 Department of Technology Management, Faculty of Management & Economy, Science and Research Branch, Islamic Azad University, Tehran, Iran.

3 Department of Industrial Management, Faculty of Management & Economy, Science and Research Branch, Islamic Azad University, Tehran, Iran.

4 Department of Industrial Management, Faculty of Management, West Tehran Branch, Islamic Azad University, Tehran, Iran.

چکیده [English]

Purpose: The present research seeks to identify the structure, how they interact and examine the factors that show the openness of the boundaries of the ecosystem of open R&D. For this purpose, the field of nanotechnology in Iran has been selected as the field of study.
Methodology: In terms of research method, this research is mixed and in terms of result, it is an application that has been done with the approach of Grandad theory, and research data were collected through library studies (a reference to existing documents and study of previous research), open interviews, and three semi-structured questionnaires.The statistical population is selected through a judgment-targeted method.7 academic experts (professors of R&D policies), 4 entrepreneurs(nanoscale-certified firms), and 4 policymakers in the nanotechnology sector (National Nanotechnology Initiative) were interviewed.Analysis of qualitative data obtained from open interviews with experts in Atlas.ti software, analysis of interrelationships through the Fuzzy-DEMATEL method in Exell, and analysis of the best decision and ranking of effective criteria for Monitoring the openness of the research and development ecosystem is performed by network analysis based on Fuzzy-DEMATEL method (DANP) in SuperDecision software.
Findings: The findings of this study show that the structure of the R&D ecosystem in Iran`s nanotechnology has ecosystemic dimensions which consist of Human resources, Infrastructure, Financial resources, Governance as well as performance dimensions which consist of commercialization, scientific works, and patents as IP. Another finding of this study is that the Performance dimension has the greatest impact on reopening the frontiers of R&D in Iran's nanotechnology and the commercialization criteria have the highest weight to monitor the R&D ecosystem.
Originality/Value: In addition to enabling policymakers to evaluate and measure policies and decisions made over time, it also helps companies streamline their knowledge and technology resources to learn, collaborate, and transfer Manage foreign companies and vice versa.

کلیدواژه‌ها [English]

  • Mixed approach
  • Open research and development
  • Research and development ecosystem
Aghdaee, E., & Husseinzadeh Kashan, A. (2018). An approach based on Leagues Championship Algorithm (LCA) and Kalman Filter for multi-objective project scheduling problem and predicting the time progress. Journal of decisions and operations research3(2), 99-113. DOI: 10.22105/dmor.2018.65519
Bilgil, H. (2021). New grey forecasting model with its application and computer code. AIMS mathematics6(2), 1497-1514.
Box, G. E., & Pierce, D. A. (1970). Distribution of residual autocorrelations in autoregressive-integrated moving average time series models. Journal of the American statistical association65(332), 1509-1526.
Carmona-Benítez, R. B., & Nieto, M. R. (2020). SARIMA damp trend grey forecasting model for airline industry. Journal of air transport management82, 101736. https://doi.org/10.1016/j.jairtraman.2019.101736
Chen, C. I. (2008). Application of the novel nonlinear grey Bernoulli model for forecasting unemployment rate. Chaos, solitons & fractals37(1), 278-287. https://doi.org/10.1016/j.chaos.2006.08.024
Darvishi Salookolaei, D., Liu, S., & Babaei, P. (2017). Application of grey system theory in rainfall estimation. Control and optimization in applied mathematics2(2), 15-32. (In Persian). http://mathco.journals.pnu.ac.ir/article_5727.html
Darvishi Salookolaei, D., Babaei, P., & Heydari Gorji, S. (2019). Prediction of renewable energy production using grey systems theory. International journal of nonlinear analysis and applications10(Special Issue (nonlinear analysis in engineering and sciences)), 39-51. DOI: 10.22075/ijnaa.2019.4395
 Ding, S., Xu, N., Ye, J., Zhou, W., & Zhang, X. (2020). Estimating Chinese energy-related CO2 emissions by employing a novel discrete grey prediction model. Journal of cleaner production259, 120793. https://doi.org/10.1016/j.jclepro.2020.120793
Eberhart, R., & Kennedy, J. (1995, October). A new optimizer using particle swarm theory. MHS'95. Proceedings of the sixth international symposium on micro machine and human science (pp. 39-43). IEEE. DOI: 10.1109/MHS.1995.494215
Eyo, I., Eyoh, J., & Umoh, U. (2021). On the prediction of COVID-19 time series: an intuitionistic fuzzy logic approach. Journal of fuzzy extension and application2(2), DOI: 171-190. 10.22105/jfea.2021.263890.1070
Huang, Y. L., & Lee, Y. H. (2011). Accurately forecasting model for the stochastic volatility data in tourism demand. Modern economy2(05), 823-829. DOI: 10.4236/me.2011.25091
Ju-long, D. (1980). Study on fuzzy decision-making systems. Retrieved from https://en.cnki.com.cn/Article_en/CJFDTotal-HZLG1980S2010.htm
Julong, D. (1989). Introduction to grey system theory. The Journal of grey system1(1), 1-24. http://www.researchinformation.co.uk/grey/IntroGreySysTheory.pdf
Khan, I. U., Aslam, N., Aljabri, M., Aljameel, S. S., Kamaleldin, M. M. A., Alshamrani, F. M., & Chrouf, S. M. (2021). Computational intelligence-based model for mortality rate prediction in covid-19 patients. International journal of environmental research and public health18(12), 6429. https://doi.org/10.3390/ijerph18126429
Kırbaş, İ., Sözen, A., Tuncer, A. D., & Kazancıoğlu, F. Ş. (2020). Comparative analysis and forecasting of COVID-19 cases in various European countries with ARIMA, NARNN and LSTM approaches. Chaos, solitons & fractals138, 110015. https://doi.org/10.1016/j.chaos.2020.110015
Kuniya, T. (2020). Prediction of the epidemic peak of coronavirus disease in Japan. Journal of clinical medicine9(3), 789. https://doi.org/10.3390/jcm9030789
Lewis, C. D. (1982). Industrial and business forecasting methods: a practical guide to exponential smoothing and curve fitting. Butterworth-Heinemann.
Liu, L., Chen, Y., & Wu, L. (2020). Forecasting confirmed cases, deaths, and recoveries from COVID-19 in China during the early stage. Mathematical problems in engineering. https://doi.org/10.1155/2020/1405764
Liu, S., & Forrest, J. Y. L. (2010). Grey systems: theory and applications. Springer Science & Business Media.
Liu, S., Yang, Y., & Forrest, J. (2017). Grey data analysis. Springer Singapore, Singapore. https://doi.org/10.1007/978-981-10-1841-1
Lixia, Z., Hong, T., & Miao, H. (2019). Grey system analysis in the field of medicine and health. Grey systems: theory and application, 9(2), 251-258. https://doi.org/10.1108/GS-11-2018-0054
Lu, J., Xie, W., Zhou, H., & Zhang, A. (2016). An optimized nonlinear grey Bernoulli model and its applications. Neurocomputing177, 206-214. https://doi.org/10.1016/j.neucom.2015.11.032
Niksirat, M., & Nasseri, S. H. (2020). Forecasting of the number of cases and deaths due to corona disease using neuro-fuzzy networks. Journal of decisions and operations research5(4), 414-425. (In Persian). DOI: 10.22105/dmor.2020.236967.1164
Pao, H. T., Fu, H. C., & Tseng, C. L. (2012). Forecasting of CO2 emissions, energy consumption and economic growth in China using an improved grey model. Energy40(1), 400-409. https://doi.org/10.1016/j.energy.2012.01.037
Pourhomayoun, M., & Shakibi, M. (2021). Predicting mortality risk in patients with COVID-19 using machine learning to help medical decision-making. Smart health20, 100178. https://doi.org/10.1016/j.smhl.2020.100178
Pourhosaingholi, M. A., Mehrabi, Y., Alani-Majd, H., & Yavari, P. (2006). Using latent variables in logistic regression model to eliminate the effect of multicolinearity in analysis of factors associated with breast cancer. Iran journal epidemiol, 1(3-4), 41-50. (In Persian). https://irje.tums.ac.ir/article-1-196-fa.html
Rath, S., Tripathy, A., & Tripathy, A. R. (2020). Prediction of new active cases of coronavirus disease (COVID-19) pandemic using multiple linear regression model. Diabetes & metabolic syndrome: clinical research & reviews14(5), 1467-1474. https://doi.org/10.1016/j.dsx.2020.07.045
Satpathy, S., Mangla, M., Sharma, N., Deshmukh, H., & Mohanty, S. (2021). Predicting mortality rate and associated risks in COVID-19 patients. Spatial information research, 29, 455–464. https://doi.org/10.1007/s41324-021-00379-5
Shirouyehzad, H., Jouzdani, J., & Khodadadi Karimvand, M. (2020). Fight against COVID-19: a global efficiency evaluation based on contagion control and medical treatment. Journal of applied research on industrial engineering7(2), 109-120. DOI: 10.22105/jarie.2020.225087.1146
Tsai, S. B., Xue, Y., Zhang, J., Chen, Q., Liu, Y., Zhou, J., & Dong, W. (2017). Models for forecasting growth trends in renewable energy. Renewable and sustainable energy reviews77, 1169-1178. https://doi.org/10.1016/j.rser.2016.06.001
Velásquez, R. M. A., & Lara, J. V. M. (2020). Forecast and evaluation of COVID-19 spreading in USA with reduced-space Gaussian process regression. Chaos, solitons & fractals136, 109924. https://doi.org/10.1016/j.chaos.2020.109924
Wang, C. N., & Phan, V. T. (2014). An improvement the accuracy of grey forecasting model for cargo throughput in international commercial ports of Kaohsiung. International journal of business and economics research3(1), 1-5. DOI: 10.11648/j.ijber.20140301.11
Wen, K. L., & Huang, Y. F. (2004, October). The development of grey Verhulst toolbox and the analysis of population saturation state in Taiwan-Fukien. 2004 IEEE international conference on systems, man and cybernetics (IEEE Cat. No. 04CH37583) (Vol. 6, pp. 5007-5012). IEEE. DOI: 10.1109/ICSMC.2004.1400986
World Health Organization (WHO). (n.d.). WHO statement regarding cluster of pneumonia cases in Wuhan, China. Beijing. Retrieved October 09, 2020, from https://www.who.int/china/news/detail/09-01-2020-who-statement-regarding-cluster-ofpneumonia-cases-in-wuhan-china
National Health Commission (NHC). (n.d.). Coronavirus death toll. Retrieved October 09, 2020, from Retrieved from https://www.worldometers.info/coronavirus/coronavirus-death-toll/
Xie, N. M., & Liu, S. F. (2009). Discrete grey forecasting model and its optimization. Applied mathematical modelling33(2), 1173-1186. https://doi.org/10.1016/j.apm.2008.01.011
Yang, X., Zou, J., Kong, D., & Jiang, G. (2018). The analysis of GM (1, 1) grey model to predict the incidence trend of typhoid and paratyphoid fevers in Wuhan City, China. Medicine97(34). DOI: 10.1097/MD.0000000000011787
Zhang, G. P. (2003). Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing50, 159-175. https://doi.org/10.1016/S0925-2312(01)00702-0
Zhao, Y. F., Shou, M. H., & Wang, Z. X. (2020). Prediction of the number of patients infected with COVID-19 based on rolling grey Verhulst models. International journal of environmental research and public health17(12), 4582. https://doi.org/10.3390/ijerph17124582
Zhou, J., Fang, R., Li, Y., Zhang, Y., & Peng, B. (2009). Parameter optimization of nonlinear grey Bernoulli model using particle swarm optimization. Applied mathematics and computation207(2), 292-299. https://doi.org/10.1016/j.amc.2008.10.045
Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., ... & Tan, W. (2020). A novel coronavirus from patients with pneumonia in China, 2019. New England journal of medicine. DOI: 10.1056/NEJMoa2001017