نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی صنایع، دانشکده مهندسی، دانشگاه بوعلی سینا، همدان، ایران.

10.22105/dmor.2021.267139.1302

چکیده

هدف: درصد قابل‌توجهی از دارایی ­ها در موجودی­های انبار انباشته شده است، از این رو انبار در اقتصاد کشورها اهمیت فراوانی دارد. طراحی و چیدمان مناسب یک انبار، نقش بسیار زیادی در کاهش هزینه ­ها، کاهش زمان تدارک و تحویل، ارتقای بهره ­برداری از منابع و ارتقای سرویس ­دهی به مشتریان دارد. یک نوع از انبارهایی که اخیرا کاربرد زیادی پیدا کرده ­اند، انبارهای عبوری هستند که از نظر میزان کالاهایی که انبار می ­شوند و همچنین مدت‌زمان نگهداری آن ­ها، با انبارهای سنتی تفاوت دارند. هدف اصلی در این تحقیق مدل‌سازی و حل مسئله ­ای سازگار با شرایط دنیای واقعی است که کمتر موردتوجه پژوهشگران قرار گرفته است.
روش‌شناسی پژوهش: برای حل مسئله مورد نظر، الگوریتم بهینه ­سازی گرگ خاکستری چند هدفه (MOGWO) بکار می­رود و تنظیم پارامترها به کمک روش تاگوچی انجام می­ گردد.
یافته‌ها: به کمک شاخص ­های متوسط فاصله از ایده­آل، فاصله، تعداد نقاط پارتو و پراکندگی، توسط نمودار نسبت سیگنال به نویز، بهترین سطح ممکن برای پارامتر­های الگوریتم تعیین شده است. با حل 10 مثال در ابعاد مختلف و بررسی نتایج و زمان حل آن ­ها مشخص شده است که با افزایش ابعاد مسئله، زمان حل نیز افزایش می ­یابد.
اصالت/ارزش افزوده علمی: در این مطالعه، علاوه بر توجه به میزان مسافت طی شده در انبار که بیشتر مطالعات صورت گرفته در حوزه طراحی انبار بدان پرداخته­اند، بهره ­گیری بیشتر از فضای قابل‌دسترسی در انبار و رضایت خرده ­فروشان نیز مد نظر قرار گرفته است. به همین منظور، یک مدل برنامه ­ریزی عدد صحیح مختلط، برای طراحی و چیدمان یک انبار عبوری در جهت حداقل نمودن مسافت ­ها، حداقل نمودن فضای خالی کف انبار و به حداکثر رساندن رضایت خرده ­فروشان پیشنهاد می ­شود.




 

کلیدواژه‌ها

عنوان مقاله [English]

Modeling and desigkning a cross dock warehouse using multi-objective gray wolf optimization algorithm

نویسندگان [English]

  • Maryam Shoaee
  • Parvaneh Samouei

Department of Industrial Engineering, Faculty of Engineering, Bu-Ali Sina University, Hamedan, Iran.

چکیده [English]

Purpose: Warehousing is very important in the economies of countries, because a significant percentage of assets are stored in the warehouse. Proper warehouse design and layout has a great role in reducing costs, reducing lead time and delivery time, improving resource utilization and customer service. One type of warehouse that has become widely used recently is cross dock warehouses, which differ from traditional warehouses in terms of the number of products stored and their storage time. The main purpose of this research is modeling and solving a problem that is compatible with real world conditions that have received less attention from researchers.
Methodology: Multi-Objective Gray Wolf Optimization (MOGWO) algorithm is used to solve the problem and Parameters are adjusted using the Taguchi method.
Findings: Using the mean ideal distance, spacing, number of pareto solutions and diversification metric, the best possible level for the algorithm parameters is determined by the signal-to-noise ratio diagram. By solving 10 examples in different sizes and reviewing the results and their solution time, it has been determined that with increasing the size of the problem, the solution time also increases.
Originality/Value: In this study, in addition to considering the distance traveled in the warehouse, which most studies have done in the field of warehouse design, more use of available space in the warehouse and the satisfaction of retailers has also been considered. For this purpose, a mixed integer programing model is proposed to design a cross dock warehouse to minimize distances, minimize the vacant space of the warehouse, and maximize retailer’s satisfaction.




 

کلیدواژه‌ها [English]

  • Multi-objective gray wolf optimization algorithm
  • Cross dock warehouse
  • Integer programming
  • Taguchi
  • Design and layout
Apte, U. M., & Viswanathan, S. (2000). Effective cross docking for improving distribution efficiencies. International journal of logistics3(3), 291-302.‏ https://doi.org/10.1080/713682769
Baker, P., & Canessa, M. (2009). Warehouse design: a structured approach. European journal of operational research193(2), 425-436.‏ https://doi.org/10.1016/j.ejor.2007.11.045
Bortolini, M., Galizia, F. G., Gamberi, M., & Gualano, F. (2020). Integration of single and dual command operations in non-traditional warehouse design. The international journal of advanced manufacturing technology111(9), 2461-2473.‏ https://doi.org/10.1007/s00170-020-06235-4
Chan, F. T., & Kumar, N. (2009). Effective allocation of customers to distribution centres: a multiple ant colony optimization approach. Robotics and computer-integrated manufacturing25(1), 1-12.‏ https://doi.org/10.1016/j.rcim.2007.05.002
Compagno, L., D’urso, D., & Trapani, N. (2012, September). Designing an optimal shape warehouse. In IFIP international conference on advances in production management systems (pp. 248-255). Springer, Berlin, Heidelberg.‏ https://doi.org/10.1007/978-3-642-40361-3_32
Deb, K., & Jain, S. (2002). Running performance metrics for evolutionary multi-objective optimization. ‏ Retrieved from https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.9.159 
Hatta, N. M., Zain, A. M., Sallehuddin, R., Shayfull, Z., & Yusoff, Y. (2019). Recent studies on optimisation method of Grey Wolf Optimiser (GWO): a review (2014–2017). Artificial intelligence review52(4), 2651-2683.‏ https://doi.org/10.1007/s10462-018-9634-2
Heragu, S. S., Du, L., Mantel, R. J., & Schuur, P. C. (2005). Mathematical model for warehouse design and product allocation. International journal of production research43(2), 327-338.
Horta, M., Coelho, F., & Relvas, S. (2016). Layout design modelling for a real world just-in-time warehouse. Computers & industrial engineering101, 1-9.
Jayaraman, V., & Ross, A. (2003). A simulated annealing methodology to distribution network design and management. European Journal of Operational Research144(3), 629-645.
Li, Y., Lim, A., & Rodrigues, B. (2004). Crossdocking—JIT scheduling with time windows. Journal of the operational research society55(12), 1342-1351.
Mirjalili, S., Saremi, S., Mirjalili, S. M., & Coelho, L. D. S. (2016). Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization. Expert systems with applications47, 106-119.
Moradi, N., & Shadrokh, S. (2019). Simultaneous solution of material procurement scheduling and material allocation to warehouse using simulated annealing. Journal of applied research on industrial engineering6(1), 1-15.
Muro, C., Escobedo, R., Spector, L., & Coppinger, R. P. (2011). Wolf-pack (Canis lupus) hunting strategies emerge from simple rules in computational simulations. Behavioural processes88(3), 192-197.
Önüt, S., Tuzkaya, U. R., & Doğaç, B. (2008). A particle swarm optimization algorithm for the multiple-level warehouse layout design problem. Computers & industrial engineering54(4), 783-799.
Ozaki, M., Hara, T., Higashi, T., & Ota, J. (2013). Design of warehouse including temporary storage using queuing network theory. In 2013 IEEE international conference on systems, man, and cybernetics (pp. 1247-1252). IEEE.
Öztürkoğlu, Ö., & Hoser, D. (2019). A discrete cross aisle design model for order-picking warehouses. European journal of operational research275(2), 411-430.
Schwind, G. F. (1995). Considerations for cross docking. Material handling engineering50(12), 47-51.
Simchi-Levi, D., Kaminsky, Ph., Simchi-Levi, E., & Shankar, R. (2008). Designing and managing the supply chain: concepts, strategies and case studies. Tata McGraw Hill Education Private Limited. https://www.worldcat.org/title/designing-and-managing-the-supply-chain-concepts-strategies-and-case-studies/oclc/733909566?referer=di&ht=edition
Stalk, G., Evans, P., & Shulman, L. E. (1992). Competing on capabilities: the new rules of corporate strategy. Harvard business review70(2), 57-69.‏ https://www.semanticscholar.org/paper/Competing-on-capabilities%3A-the-new-rules-of-Stalk-Evans/a85f39bd907590c41db9ce1793a8ad31bfe8295b
Vis, I. F., & Roodbergen, K. J. (2011). Layout and control policies for cross docking operations. Computers & industrial engineering61(4), 911-919.
Yener, F., & Yazgan, H. R. (2019). Optimal warehouse design: literature review and case study application. Computers & industrial engineering129, 1-13.
Zhang, Y., & Khan, S. A. R. (2017). Importance of warehouse layout in order fulfilling process improvement. International journal of transportation engineering and technology3(4), 49-52.
Zhou, G., Min, H., & Gen, M. (2003). A genetic algorithm approach to the bi-criteria allocation of customers to warehouses. International journal of production economics86(1), 35-45.