نوع مقاله : مقاله پژوهشی - کاربردی

نویسندگان

1 گروه مدیریت صنعتی، واحد قزوین، دانشگاه آزاد اسلامی، قزوین، ایران.

2 گروه مدیریت صنعتی، دانشکده مدیریت و حسابداری، دانشگاه علامه طباطبایی، تهران، ایران.

چکیده

هدف: هدف از این مطالعه طراحی یک مدل زنجیره‌تامین خون استوار که شامل مراحل جمع­‌آوری، فرآوری و توزیع خون و محصولات خونی با درنظر گرفتن طول عمر و سن تقاضا بوده است که مدل پیشنهادی به دنبال کاهش هزینه‌­های متحمل بر زنجیره‌تامین و نیز کاهش کمبود و اتلاف محصولات خونی می­‌باشد.
روش‌شناسی پژوهش: در این تحقیق از روش برنامه‌­نویسی ریاضی غیر­خطی به‌­منظور مدل‌سازی مساله تحقیق استفاده شده و به‌­منظور مواجه با عدم قطعیت در پارامترهای مساله نیز روش برنامه‌­ریزی استوار امکانی-منعطف مختلط مبتنی بر داده‌­های فازی پیشنهاد شده است. مدل طراحی‌شده ابتدا به­‌منظور اعتبارسنجی با مثال­‌های عددی در سایز کوچک و بزرگ و با استفاده از داده‌­های واقعی در یک مطالعه موردی در نرم‌افزار گمز مورد ارزیابی قرار گرفته است.
یافته‌ها: یافته­‌های تحقیق چه در بخش اعتبار­سنجی و چه در بخش مطالعه موردی، بیانگر کارایی مدل پیشنهادی می‌­باشد. هم‌چنین خروجی مدل انعطاف‌پذیری مورد قبولی در­مقابل عدم قطعیت مشاهده‌شده در پارامترهای تحقیق داشته است.
اصالت/ارزش‌افزوده علمی: در این تحقیق به جهت کاهش کمبود فرآورده‌های خونی در شرایطی که محصول خونی هم­‌گروه با محصول خونی موردتقاضا موجود نباشد، از اصل تطبیق‌پذیری ABO-RH  به‌منظور جایگزین نمودن تقاضای واصله با موجودی قابل تطبیق استفاده شده است و هم‌چنین به­منظور مقابله با عدم قطعیت در پارامترهای غیرقطعی در زنجیره‌تامین یک راهکار مبتنی بر بهینه‌سازی استوار امکانی-منعطف پیشنهاد شده است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

A robust possibilistic programming approach to design a comprehensive blood supply chain based on the ABO-RH index

نویسندگان [English]

  • Taher Kouchaki Tajani 1
  • Ali Mohtashami 1
  • Maghsoud Amiri 2
  • Reza Ehtesham Rasi 1

1 Department of Industrial Management, Qazvin Branch, Islamic Azad University, Qazvin, Iran.

2 Department of Industrial Management, Faculty of Management and Accounting, Allameh Tabatabai University, Tehran, Iran.

چکیده [English]

Purpose: This paper aimed to design a robust blood supply chain model that includes the stages of collection, processing and distribution of blood and blood products taking into account the lifespan and age of demand, which seeks to reduce supply chain costs and reduce the shortage and waste of blood products.
Methodology: In this paper, MINLP method is used to model the research problem and in order to face the uncertainty in the problem parameters, the MPFRP method based on fuzzy data is proposed. The designed model was first evaluated for validation with numerical examples in small and large size and using real data in a case study in GAMS software?
Findings: Using numerical examples and real data, the output indicates the performance of the proposed model. The output also had acceptable flexibility in the face of uncertainty in the parameters of the research model.
Originality/Value: In this study, in order to reduce the shortage of blood products in situations where blood product is not available in the same group as the requested blood product, the ABO-RH adaptability principle has been used to replace the received demand with a compatible inventory. And also, to deal with uncertainty in uncertain parameters in the supply chain a solution based onmixed possibilistic-flexible robust programming is proposed.

کلیدواژه‌ها [English]

  • Robust programming
  • Robust possibilistic programing
  • Mixed integer non-liner programing
  • Blood supply chain
[1]     Osorio, A. F., Brailsford, S. C., Smith, H. K., Forero-Matiz, S. P., & Camacho-Rodríguez, B. A. (2017). Simulation-optimization model for production planning in the blood supply chain. Health care management science, 20(4), 548–564. DOI:10.1007/s10729-016-9370-6
[2]     Dillon, M., Oliveira, F., & Abbasi, B. (2017). A two-stage stochastic programming model for inventory management in the blood supply chain. International journal of production economics, 187, 27–41. DOI:10.1016/j.ijpe.2017.02.006
[3]     Zahiri, B., & Pishvaee, M. S. (2017). Blood supply chain network design considering blood group compatibility under uncertainty. International journal of production research, 55(7), 2013–2033. DOI:10.1080/00207543.2016.1262563
[4]     Zahiri, B., Torabi, S. A., Mohammadi, M., & Aghabegloo, M. (2018). A multi-stage stochastic programming approach for blood supply chain planning. Computers and industrial engineering, 122, 1–14. DOI:10.1016/j.cie.2018.05.041
[5]     Kalantari, M., & Pishvaee, M. S. (2016). A robust possibilistic programming approach to drug supply chain master planning. Journal of industrial engineering research in production systems4(7), 49-67. (In Persian). https://ier.basu.ac.ir/article_1568.html?lang=en
[6]     Nahmias, S. (1978). Fixed-charge perishable inventory problem. Operations research, 26(3), 464–481. DOI:10.1287/opre.26.3.464
[7]     Ghandforoush, P., & Sen, T. K. (2010). A DSS to manage platelet production supply chain for regional blood centers. Decision support systems, 50(1), 32–42. DOI:10.1016/j.dss.2010.06.005
[8]     Hemmelmayr, V., Doerner, K. F., Hartl, R. F., & Savelsbergh, M. W. P. (2010). Vendor managed inventory for environments with stochastic product usage. European journal of operational research, 202(3), 686–695. DOI:10.1016/j.ejor.2009.06.003
[9]     Nagurney, A., & Masoumi, A. H. (2012). Supply chain network design of a sustainable blood banking system. International series in operations research and management science, 174, 49–72. DOI:10.1007/978-1-4419-6105-1_5
[10]   Gunpinar, S., & Centeno, G. (2015). Stochastic integer programming models for reducing wastages and shortages of blood products at hospitals. Computers and operations research, 54, 129–141. DOI:10.1016/j.cor.2014.08.017
[11]   Ramezanian, R., & Behboodi, Z. (2017). Blood supply chain network design under uncertainties in supply and demand considering social aspects. Transportation research part E: logistics and transportation review, 104, 69–82. DOI:10.1016/j.tre.2017.06.004
[12]   Najafi, M., Ahmadi, A., & Zolfagharinia, H. (2017). Blood inventory management in hospitals: considering supply and demand uncertainty and blood transshipment possibility. Operations research for health care, 15, 43–56. DOI:10.1016/j.orhc.2017.08.006
[13]   Ghatreh Samani, M. R., Torabi, S. A., & Hosseini-Motlagh, S. M. (2018). Integrated blood supply chain planning for disaster relief. International journal of disaster risk reduction, 27, 168–188. DOI:10.1016/j.ijdrr.2017.10.005
[14]   Hamdan, B., & Diabat, A. (2019). A two-stage multi-echelon stochastic blood supply chain problem. Computers and operations research, 101, 130–143. DOI:10.1016/j.cor.2018.09.001
[15]   Hosseini-Motlagh, S. M., Samani, M. R. G., & Homaei, S. (2020). Blood supply chain management: robust optimization, disruption risk, and blood group compatibility (a real-life case). Journal of ambient intelligence and humanized computing, 11(3), 1085–1104. DOI:10.1007/s12652-019-01315-0
[16]   Derikvand, H., Hajimolana, S. M., Jabbarzadeh, A., & Najafi, S. E. (2020). A robust stochastic bi-objective model for blood inventory-distribution management in a blood supply chain. European journal of industrial engineering, 14(3), 369–403. DOI:10.1504/EJIE.2020.107676
[17]   Doodman, M., & Bozorgi Amiri, A. (2019). Integrate blood supply chain network design with considering lateral transshipment under uncertainty. Journal of industrial management perspective, 9(3), 9–40. (In Persian).  https://www.sid.ir/paper/408439/en
[18]   Arvan, M., Tavakkoli-Moghaddam, R., & Abdollahi, M. (2015). Designing a bi-objective, multi-product supply chain network for blood supply. Uncertain supply chain management, 3(1), 57–68. DOI:10.5267/j.uscm.2014.8.004
[19]   Heidari-Fathian, H., & Pasandideh, S. H. R. (2018). Green-blood supply chain network design: robust optimization, bounded objective function & Lagrangian relaxation. Computers and industrial engineering, 122, 95–105. DOI:10.1016/j.cie.2018.05.051
[20]   Larimi, N. G., & Yaghoubi, S. (2019). A robust mathematical model for platelet supply chain considering social announcements and blood extraction technologies. Computers & industrial engineering, 137, 106014.
[21]   Kamyabniya, A., Lotfi, M. M., Naderpour, M., & Yih, Y. (2018). Robust platelet logistics planning in disaster relief operations under uncertainty: a coordinated approach. Information systems frontiers, 20(4), 759–782. DOI:10.1007/s10796-017-9788-5
[22]   Eskandari, Z., Avakh Darestani, S., Imannezhad, R., & Sharifi, M. (2021). Optimizing a fuzzy multi-objective closed-loop supply chain model considering financial resources using meta-heuristic. Scientia Iranica, 30(4), 1480–1497.
[23]   Pishvaee, M. S., Razmi, J., & Torabi, S. A. (2012). Robust possibilistic programming for socially responsible supply chain network design: a new approach. Fuzzy sets and systems, 206, 1–20.
[24]   Mula, J., Poler, R., & Garcia, J. P. (2006). MRP with flexible constraints: a fuzzy mathematical programming approach. Fuzzy sets and systems, 157(1), 74–97.
[25]   Yager, R. R. (1981). A procedure for ordering fuzzy subsets of the unit interval. Information sciences, 24(2), 143–161.
[26]   Jiménez, M., Arenas, M., Bilbao, A., & Rodrı, M. V. (2007). Linear programming with fuzzy parameters: an interactive method resolution. European journal of operational research, 177(3), 1599–1609.
[27]   Pishvaee, M. S., & Khalaf, M. F. (2016). Novel robust fuzzy mathematical programming methods. Applied mathematical modelling, 40(1), 407–418.