نوع مقاله : مقاله پژوهشی - کاربردی

نویسندگان

1 گروه مدیریت، واحد امیدیه، دانشگاه ازاد اسلامی، امیدیه، ایران.

2 گروه ریاضی ، واحد امیدیه، دانشگاه آزاد اسلامی، امیدیه، ایران.

10.22105/dmor.2021.254802.1245

چکیده

هدف:  تحقیق حاضر در پی آن است که یک ارائه مدل ریاضی برنامه‌ریزی تولید تجمیعی چندهدفه چند محصولی چندمرحله‌ای برای چند دوره در زنجیره تأمین معکوس تحت شرایط عدم قطعیت با استفاده از الگوریتم فرا ابتکاری ژنتیک ارائه نماید.
روش‌شناسی پژوهش:  اولین تابع هدف مدل مذکور حداقل سازی انواع هزینه، تابع هدف دوم حداکثر سازی کیفیت محصولات تولیدی در زنجیره تأمین مذکور، تابع هدف سوم و چهارم به ترتیب بیانگر حداقل کردن مجموع وزنی حداکثر کمبود در میان مشتریان و حداکثر کردن مجموع وزنی حداقل میزان تأمین کالا از تأمین‌کنندگان است. در این مدل تابع هدف اول و دوم در حالت عدم قطعیت -استوار فازی احتمالی به روش مالوی بر اساس سناریونویسی طراحی‌شده است.
یافته ها:  نتایج حاصل از حل مدل ریاضی پیشنهادی کاربردی توسعه‌یافته با کد نویسی در نرم‌افزار متلب مورد تأیید مسئولین شرکت قطعات بتنی بروجن استحکام واقع شد و در جدول‌های (16) و (17) آورده شده است.
اصالت/ارزش افزوده علمی: آنچه در طراحی این مدل که به‌صورت برنامه‌ریزی غیرخطی فرمول شده است، اهمیت دارد و در پژوهش‌های مشابه مشاهده نشده است، وجود مرکز بازسازی و مرکز نگهداری و تعمیرات و در نظر گرفتن توابع هدف برای رضایت مشتریان و تأمین‌کنندگان و نیز توجه به کیفیت محصول دریافت شده از تأمین‌کنندگان و محصول تولیدشده به‌وسیله تولیدکننده می‌باشد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Designing a multi _objective mathematical model for integrated production planning in a reversible supply chain with the uncertainty approach and using the nsgall meta_industry

نویسندگان [English]

  • Saeid Rezaie moghadam 1
  • Aslan Doosti 2

1 Department of Management, Omidyeh Branch, Islamic Azad University, Omidyeh, Iran.

2 Department of Mathematics, Omidiyeh Branch, Slamic Azad University, Omidiyeh, Iran.

چکیده [English]

Purpose: The present study concludes that by designing and presenting a mathematical model of multi-objective cogeneration production planning, multi-stage products for several periods in the reverse supply chain under uncertainty conditions were presented using a genetic meta-heuristic algorithm.
Methodology: The first objective function of the model is to minimize costs, the second objective function is to maximize the quality of products in the supply chain, and the third and fourth objective functions are to minimize the total weight of the maximum shortage among customers and to maximize the total weight of the minimum supply. Goods from suppliers. In this model, the first and second objective functions are designed in the case of uncertainty- possible fuzzy stability by Malvey method based on scenario writing.
Findings: The results of solving the proposed applied mathematical model developed by coding in MATLAB software were approved by the officials of Borujen Strong Stream Concrete Company, which are given in Tables (16) and (17).
Originality/Value: What is important in designing this model, which is formulated in a non-linear programming and has not been observed in similar studies, is the existence of a reconstruction center and a maintenance center and considering target functions for customer and supplier satisfaction and also paying attention to product quality. Suppliers and the product produced by the manufacturer.

کلیدواژه‌ها [English]

  • Multi-Objective Mathematical Model
  • Cumulative production planning
  • reverse supply chain
Ahmed, S. M., Biswas, T. K., & Nundy, C. K. (2019). An optimization model for aggregate production planning and control: a genetic algorithm approach. International journal of research in industrial engineering8(3), 203-224. DOI: 10.22105/riej.2019.192936.1090
Azami, A., & Makoei, A. (2016). A robust optimization model for planning the integrated production of multi-factory perishable products under uncertainty conditions with a deferral policy. Scientific quarterly "research in industrial management studies. 14(43), 27-51. (In Persian). https://www.sid.ir/fa/journal/ViewPaper.aspx?id=319721
Azar, A., & Sadat Hosseini, A. (2014). Designing a multi-product production planning model in the supply chain based on the ideal planning approach. Industrial Management Studies, 12(34), 1-17. (In Persian). https://civilica.com/doc/720777/
Gholamrezaei, R. M., & Zare, H. K. (2015). Development of a multi- product, multi- period and multi- objective production planning model with fuzzy parameter. Production and operations management quarterly, 6(1), 61-78. (In Persian). https://www.sid.ir/fa/journal/ViewPaper.aspx?id=314266
Hajji, A., & Mohammad Rahimi, A. (2008). Application of fuzzy multi-objective linear programming in integrated production planning. Sixth international conference on industrial engineering. Sharif University of technology, Iranian industrial engineering association, Tehran. (In Persian). https://civilica.com/doc/58910/
Hosseini, S. (2020). Modelling and solving the multi objective aggregate production planning with maintenance costs and dissatisfaction reduction approach. Industrial management studies, 18(56), 129-169. (In Persian). DOI: 10.22054/jims.2019.29711.1988
Karimi, M., Sohrabi, T., & Mehrmanesh, H. (2020). An integrated mathematical model of production planning considering order acceptance, production and customer delivery at marun petrochemical company. Journal of quality engineering and production optimization, 5(2), 21-42. (In Persian). DOI: 10.22070/jqepo.2020.5360.1148
Kazemi, A., & Kongi, F. (2012). Presenting a model for optimizing the production and distribution program in the supply chain. The third national conference on industrial and system engineering. Islamic Azad University, South Tehran Branch, Tehran. (In Persian). https://civilica.com/doc/162429/
Khatami Firoozabadi, S. M. A., Makoei, A., & Piri, V. (2013) Integrated production planning of Iran pipe and machinery company with the ideal gray planning approach. Management research journal of tomorrow, 12(35). (In Persian). https://www.magiran.com/paper/1483102
Khosrowabadi, N., & Jabarzadeh, A. (2017). Presenting a multi-objective model of integrated planning and production management for manufacturing production systems to order with value-added approach. 5th international conference on economics, management, accounting with value creation approach. Narun certified managers training institute, Shiraz. (In Persian). https://civilica.com/doc/622273
Kopaei Haji, K., & Rashidi Komijan, A. (2015). Presenting an integrated model of integrated production and procurement planning with a discount system. The second national conference on industrial engineering research. Buali research group, Tehran. (In Persian). https://civilica.com/doc/430771/
Masud, A. S., & Hwang, C. L. (1980). An aggregate production planning model and application of three multiple objective decision methods. International journal of production research18(6), 741-752. https://doi.org/10.1080/00207548008919703
Mirzapour Al-E-Hashem, S. M. J., Malekly, H., & Aryanezhad, M. B. (2011). A multi-objective robust optimization model for multi-product multi-site aggregate production planning in a supply chain under uncertainty. International journal of production economics134(1), 28-42. https://doi.org/10.1016/j.ijpe.2011.01.027
Mirzapour Al-E-Hashem, S. M. J., Aryanezhad, M. B., & Sadjadi, S. J. (2012). An efficient algorithm to solve a multi-objective robust aggregate production planning in an uncertain environment. The international journal of advanced manufacturing technology58(5), 765-782. https://doi.org/10.1007/s00170-011-3396-1
Mirzapour Al-e-Hashem, S. M. J., Baboli, A., & Sazvar, Z. (2013). A stochastic aggregate production planning model in a green supply chain: considering flexible lead times, nonlinear purchase and shortage cost functions. European journal of operational research230(1), 26-41. https://doi.org/10.1016/j.ejor.2013.03.033
Mulvey, J. M., Vanderbei, R. J., & Zenios, S. A. (1995). Robust optimization of large-scale systems. Operations research43(2), 264-281. https://doi.org/10.1287/opre.43.2.264
Nazari, L., & Rahmani, M. (2019). Robust aggregate production planning for risk-averse managers in uncertainty conditions. Journal of industrial engineering research in production systems7(14), 93-105. (In Persian). DOI: 10.22084/ier.2019.14372.1658
Nobil, A. H., & Kazemi, A. (2016). Presents a multi-objective fuzzy model for integrated production-distribution planning in a four-level closed-loop supply chain. International journal of industrial engineering and production management, 27(1), 91-104. (In Persian). http://ijiepm.iust.ac.ir/article-1-1056-fa.html
Ramyar, M., Mehdizadeh, E., & Hadji Molana, M. (2017). Optimizing reliability and cost of system for aggregate production planning in supply chain. Scientia Iranica24(6), 3394-3408. DOI: 10.24200/sci.2017.4398
Rezaie Moghadam, S., & Doosti, A. (2019). Desining a multi-objective mathematical model of cumulative production planning in reverse supply chain with production quality function under uncertainty and using mpsoga tran-innovation algorithm (high-tech industry case study). Engineering management and soft computing, 5(2), 325-356. (In Persian). http://jemsc.qom.ac.ir/article_1850.html
Rezaie Moghadam, S., yousefi, O., Karbasian, M., Khayambashi, B. (2018). Integrated production-distribution planning in a reverse supply chain via multi-objective mathematical modeling; case study in a high-tech industry. Journal of production and operations management, 9(2), 57-76. DOI: 10.22108/jpom.2018.101750.1011
Sutrisno, P. A., Wicaksono., & Solikhin. (2019). Probabilistic multi-objective optimization approach to solve production planning and raw material supplier selection problem under probabilistic demand value. Journal of physics: conference series. http://dx.doi.org/10.1088/1742-6596/1397/1/012075 
 Toloie Ashlaghi, A., EhteshamRasi, R., Nazemi, J., & Alborzi, M. (2014). Designing a mathematic model for optimization of processes of production planning and inventory control in reverse supply chain. Journal of development & evolution mnagement, 1393(18), 1-12. (In Persian). http://www.jdem.ir/article_439.html
Yazdani, F., Tavakkoli-Moghaddam, R., & Bashiri, M. (2014). A bi-objective mathematical model for designing the closed-loop supply chain network with disruption in production centers. Journal of applied research on industrial engineering, 1(3)180-197. http://www.journal-aprie.com/article_43053.html
Zarrinpour, N., Didar, E., & Mansouri, N. (2018). Presenting a robust optimization model for mass production planning in green supply chain management. 15 th international conference on industrial engineering (pp. 55-91). Yazd University, Iranian Industrial Engineering Association, Yazd. (In Persian). https://civilica.com/doc/839727/