نوع مقاله : مقاله پژوهشی - کاربردی

نویسندگان

1 گروه ریاضی، واحد یادگار امام خمینی (ره) شهر ری، دانشگاه آزاد اسلامی، شهر ری، ایران.

2 گروه ریاضی و آمار، واحد قائم‌شهر، دانشگاه آزاد اسلامی، قائم‌شهر، ایران.

10.22105/dmor.2021.267206.1303

چکیده

هدف: در مدل‌های کلاسیک تحلیل پوششی داده‌ها، ازیک‌طرف یک سیستم تولیدی برای اندازه‌گیری کارایی به‌عنوان جعبه سیاه در نظر گرفته می‌شود و توجهی به ساختار داخلی واحدهای تصمیم‌گیرنده در فرایند ارزیابی عملکرد نمی‌شود. بااین‌وجود، در نظر گرفتن ساختار درونی واحدها جهت شناسایی منابع ناکارایی برای محاسبه کارایی اهمیت به سزایی دارد. از طرف دیگر، مقادیر مشاهده‌شده‌ی داده‌های ورودی و خروجی‌ها در مسائل جهان واقعی گاهی نادقیق و مبهم هستند؛ بنابراین در این مقاله، مدل تحلیل پوششی داده‌های شبکه‌ای به‌منظور ارزیابی عملکرد واحدهای تصمیم‌گیرنده با ساختار دومرحله‌ای در محیط فازی موردبررسی قرار می‌گیرد که در آن مقادیر ورودی و خروجی برحسب اعداد فازی مثلثی نمایش داده می‌شوند.
روش‌شناسی پژوهش: برای حل مدل تحلیل پوششی داده‌های دومرحله‌ای فازی از رویکرد حساب فازی استفاده می‌شود و یک روش الفبایی برای محاسبه کارایی فازی فرآیندها و کارایی فازی سیستم پیشنهاد می‌گردد.
یافته ها: مزیت اصلی رویکرد پیشنهادی نسبت به رویکردهای موجود این است که مدل‌های کمتری برای یافتن کارایی فازی حل می‌کند.
اصالت/ارزش‌افزوده علمی: کاربرد مدل پیشنهادی با ارزیابی عملکرد 24 شرکت بیمه تبیین می‌شود

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Efficiency evaluation in fuzzy two-stage data envelopment analysis based on fuzzy arithmetic approach

نویسندگان [English]

  • Mohammad Kachouei 1
  • Ali Ebrahimnejad 2
  • Hadi Bagherzadeh Valami 1

1 Department of Mathematics, Yadegar -e- Imam Khomeini (RAH) Shahr-e-Rey Branch, Islamic Azad University, Shahr-e-Rey, Iran.

2 Department of Mathematic and Statistics, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran.

چکیده [English]

Purpose: In classical data envelopment analysis models, a production system for measuring performance is considered as a black box and no attention is paid to the internal structure of decision-making units in the process of evaluation performance. However, it is important to consider the internal structure of the units to identify sources of inefficiency to calculate efficiency. On the other hands, the observed values of input and output data in real world problems are sometimes imprecise and vague. Therefore, in this paper, the network data envelopment analysis model is used in order to evaluate the performance of decision-making units with a two-stage structure in a fuzzy environment in which input and output values are displayed in terms of triangular fuzzy numbers.
Methodology: To solve the fuzzy two-stage data envelopment analysis model, the fuzzy arithmetic approach is used and a lexicographic optimization method for calculating the fuzzy efficiency of processes and the fuzzy efficiency of the system is proposed.
Findings: The main advantage of the proposed approach over the exsiting approaches is that it solves fewer models for finding fuzzy efficiency.
Originality/Value: The application of the proposed model is explained by evaluating the performance of 24 insurance companies.

کلیدواژه‌ها [English]

  • Two-stage data envelopment analysis
  • Fuzzy Numbers
  • fuzzy arithmetic approach
  • lexicographic method
 
Amirteimoori, A. (2013). A DEA two-stage decision processes with shared resources. Central european journal of operations research, 21(1), 141-151.
Amirteimoori, A. R., Shahroodi, K. & Mahmoodkiani, F. S. (2015). Network data envelopment analysis: application to Gas companies in Iran. International journal of applied operational research, 5(1), 1-16.
Azar, A., Zarei Mahmoudabadi, M., & Emrouznejad, A. (2016). A new fuzzy additive model for determining the common set of weights in Data Envelopment Analysis. Journal of intelligent & fuzzy systems, 30(1), 61-69.
Bhardwaj, B., Kaur, J., & Kumar, A. (2018). A new fuzzy CCR data envelopment analysis model and its application to manufacturing enterprises. Soft computing applications for group decision-making and consensus modeling (pp. 345-368). Springer, Cham.
Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European journal of operational research, 2(6), 429-444.
Ebrahimnejad, A., & Amani, N. (2021). Fuzzy data envelopment analysis in the presence of undesirable outputs with ideal points. Complex & intelligent systems, 7(1), 379-400.
Ebrahimnejad, A., & Verdegay, J. L. (2018). Fuzzy sets-based methods and techniques for modern analytics (Vol. 364). Springer.
Guo, P. (2009). Fuzzy data envelopment analysis and its application to location problems. Information sciences, 179(6), 820-829.
Guo, P., & Tanaka, H. (2001). Fuzzy DEA: a perceptual evaluation method. Fuzzy sets and systems, 119(1), 149-160.
Hatami-Marbini, A., & Saati, S. (2018). Efficiency evaluation in two-stage data envelopment analysis under a fuzzy environment: a common-weights approach. Applied soft computing, 72, 156-165.
Hatami-Marbini, A., Beigi, Z. G., Hougaard, J. L., & Gholami, K. (2018a). Measurement of returns-to-scale using interval data envelopment analysis models. Computers & industrial engineering, 117, 94-107.
Hatami-Marbini, A., Ebrahimnejad, A., & Lozano, S. (2017). Fuzzy efficiency measures in data envelopment analysis using lexicographic multiobjective approach. Computers & industrial engineering, 105, 362-376.
Hatami-Marbini, A., Saati, S., & Sajadi, S. M. (2018b). Efficiency analysis in two-stage structures using fuzzy data envelopment analysis. Central European journal of operations research, 26(4), 909-932.
Kachouei, M., Ebrahimnejad, A., & Bagherzadeh-Valami, H. (2020). A common-weights approach for efficiency evaluation in fuzzy data envelopment analysis with undesirable outputs: application in banking industry. Journal of intelligent & fuzzy systems, 39(5), 1-18.
Kao, C., & Hwang, S. N. (2008). Efficiency decomposition in two-stage data envelopment analysis: an application to non-life insurance companies in Taiwan. European journal of operational research, 185(1), 418-429.
Kao, C., & Liu, S. T. (2000). Fuzzy efficiency measures in data envelopment analysis. Fuzzy sets and systems, 113(3), 427-437.
Kao, C., & Liu, S. T. (2003). A mathematical programming approach to fuzzy efficiency ranking. International journal of production economics, 86(2), 145-154.
Kao, C., & Liu, S. T. (2011). Efficiencies of two-stage systems with fuzzy data. Fuzzy sets and systems, 176(1), 20-35.
Liu, S. T. (2014a). Fuzzy efficiency ranking in fuzzy two-stage data envelopment analysis. Optimization letters, 8(2), 633-652.
Liu, S. T. (2014b). Restricting weight flexibility in fuzzy two-stage DEA. Computers & industrial engineering, 74, 149-160.
Lozano, S. (2014). Process efficiency of two-stage systems with fuzzy data. Fuzzy sets and systems, 243, 36-49.
Puri, J., & Yadav, S. P. (2014). A fuzzy DEA model with undesirable fuzzy outputs and its application to the banking sector in India. Expert systems with applications, 41(14), 6419-6432.
Ruiz, J. L., & Sirvent, I. (2017). Fuzzy cross-efficiency evaluation: a possibility approach. Fuzzy optimization and decision making, 16(1), 111-126.
Saati, S. M., Memariani, A., & Jahanshahloo, G. R. (2002). Efficiency analysis and ranking of DMUs with fuzzy data. Fuzzy optimization and decision making, 1(3), 255-267.
Tsai, M. C., Cheng, C. H., Nguyen, V. T., & Tsai, M. I. (2020). The theoretical relationship between the CCR model and the two-stage DEA model with an application in the efficiency analysis of the financial industry. Symmetry, 12(5), 712. https://doi.org/10.3390/sym12050712
Wang, Q., Wu, Z., & Chen, X. (2019). Decomposition weights and overall efficiency in a two-stage DEA model with shared resources. Computers & industrial engineering, 136, 135-148.
Wang, Y. M., Luo, Y., & Liang, L. (2009). Fuzzy data envelopment analysis based upon fuzzy arithmetic with an application to performance assessment of manufacturing enterprises. Expert systems with applications, 36(3), 5205-5211.
Zhang, J., Wu, Q., & Zhou, Z. (2019). A two-stage DEA model for resource allocation in industrial pollution treatment and its application in China. Journal of cleaner production, 228, 29-39.