نوع مقاله : مقاله پژوهشی

نویسندگان

1 پژوهشکده توسعه و برنامه ریزی جهاد دانشگاهی، تبریز، ایران.

2 گروه مهندسی صنایع، واحد کرج، دانشگاه آزاد اسلامی، کرج، ایران.

10.22105/dmor.2021.270988.1311

چکیده

هدف: در این مقاله یک شبکه لجستیک بشردوستانه با در نظر گرفتن قرارداد خرید در شرایط عدم قطعیت طراحی شده است. با توجه به اهمیت موضوع این‌گونه شبکه‌ها در زمان وقوع حوادث غیرمترقبه، مدل طراحی شده درصدد تعیین انبارهای مرکزی و محلی و همچنین پناهگاه‌ها جهت انتقال مصدومین می‌باشد. همچنین تعین بهینه مقدار موجودی انبار و نحوه صحیح انتقال اقلام و مصدومین از دیگر تصمیمات شبکه مدنظر است. در این مقاله قرارداد خرید اقلام قبل و بعد از وقوع حوادث با تأمین‌کنندگان بسته می‌شود تا نسبت به شدت وقوع حادثه نسبت به تأمین مواد اولیه اقدام نمایند.
روش‌شناسی پژوهش: به دلیل وجود عدم قطعیت در مدل از روش بهینه‌سازی استوار جهت کنترل عدم قطعیت و به دلیل NP-Hard بودن مدل از الگوریتم جدید ترکیبی گرگ خاکستری با ژنتیک (GGWA) جهت حل مدل استفاده شده است.
یافته ها: نتایج نشان می‌دهد به‌کارگیری قرارداد منجر به کاهش هزینه‌های کل شبکه لجستیک بشردوستانه شده است. مقایسه میانگین‌های تابع هدف و زمان محاسباتی نشان از سرعت‌بالای الگوریتم GGWA در یافتن جواب‌های نزدیک به بهینه نسبت به الگوریتم‌های PSO و GA دارد.
اصالت/ارزش افزوده علمی: در این مقاله یک مدل نوین از شبکه زنجیره تأمین بشردوستانه طراحی شده است که با استفاده از الگوریتم ترکیبی GGWA در کوتاه ترین زمان، نتایج بسیار مطلوبی از مسئله کسب شده است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Design of a humanitarian logistics network considering the purchase contract

نویسندگان [English]

  • Javid Ghahremani Nahr 1
  • Mehrnaz Bathaee 2

1 Academic Center for Education, Culture and Research (ACECR), Tabriz, Iran.

2 Department of Industrial Engineering, Karaj Branch, Islamic Azad University, Karaj, Iran.

چکیده [English]

Purpose: In this paper, a humanitarian logistics network is designed considering the purchase contract in conditions of uncertainty. Due to the importance of such networks in the event of unforeseen events, the designed model seeks to determine the central and local warehouses as well as shelters to transport the injured. Also, determining the optimal amount of inventory and the correct way of transferring items and injured are other network decisions. In this article, the contract for purchasing items before and after the accident is concluded with suppliers in order to supply raw materials to the severity of the accident.
Methodology: Due to the uncertainty in the model, the robust optimization method is used to control the uncertainty, and due to the NP-Hardness of the model, the new Gray Wolf-Genetics Algorithm (GGWA) is used to solve the model.
Findings: The results show that contract operation has reduced the costs of the entire humanitarian logistics network. The comparison of the means of the objective function and the computational time shows the high speed of the GGWA algorithm in finding near-optimal solutions compared to the PSO and GA algorithms.




Originality/Value:  In this paper, a new model of humanitarian supply chain network has been designed, which has obtained very favorable results from the problem using the GGWA algorithm in the shortest time.

کلیدواژه‌ها [English]

  • Humanitarian logistics
  • robust optimization
  • Hybrid Gray Wolf Algorithm and Genetics (GGWA)
Adıvar, B., & Mert, A. (2010). International disaster relief planning with fuzzy credibility. Fuzzy optimization and decision making9(4), 413-433.
Akbarpour, M., Torabi, S. A., & Ghavamifar, A. (2020). Designing an integrated pharmaceutical relief chain network under demand uncertainty. Transportation research part E: logistics and transportation review, 136, 101867.
Altay, N., & Green III, W. G. (2006). OR/MS research in disaster operations management. European journal of operational research, 175(1), 475-493.
Balcik, B., Beamon, B. M., & Smilowitz, K. (2008). Last mile distribution in humanitarian relief. Journal of intelligent transportation systems, 12(2), 51-63.
Ben-Tal, A., & Nemirovski, A. (1998). Robust convex optimization. Mathematics of operations research, 23(4), 769-805.
Boonmee, C., Arimura, M., & Asada, T. (2017). Facility location optimization model for emergency humanitarian logistics. International journal of disaster risk reduction, 24, 485-498.
Ceselli, A., Righini, G., & Tresoldi, E. (2014). Combined location and routing problems for drug distribution. Discrete applied mathematics, 165, 130-145.
Ejlali, B., Bagheri, S. F., & Ghaziyani, K. (2019). Integrated and periodic relief logistics planning for reaction phase in uncertainty condition and model solving by PSO algorithm. International journal of research in industrial engineering, 8(4), 294-311.
Ghahremani Nahr, J., Kian, R., & Sabet, E. (2019a). A robust fuzzy mathematical programming model for the closed-loop supply chain network design and a whale optimization solution algorithm. Expert systems with applications, 116, 454-471.
Ghahremani Nahr, J., Pasandideh, S. H. R., & Niaki, S. T. A. (2020b). A robust optimization approach for multi-objective, multi-product, multi-period, closed-loop green supply chain network designs under uncertainty and discount. Journal of industrial and production engineering, 37(1), 1-22.
Ghahremani Nahr, J., Kian, R., & Rezazadeh, H. (2018). A modified priority-based encoding for design of a closed-loop supply chain network using a discrete league championship algorithm. Mathematical problems in engineering, 115, 25-43.
Ghahremani Nahr, J., Nozari, H., & Najafi, S. E. (2020c). Design a green closed loop supply chain network by considering discount under uncertainty. Journal of applied research on industrial engineering, 7(3), 238-266.
Ghahremani Nahr, J., Ghodratnama, A., IzadBakhah, H. R., & Tavakkoli Moghaddam, R. (2019b). Design of multi-objective multi-product multi period green supply chain network with considering discount under uncertainty. Journal of industrial engineering research in production systems, 6(13), 119-137.
Ghahremani Nahr, J. (2020b). Improvement the efficiency and efficiency of the closed loop supply chain: Whale optimization algorithm and novel priority-based encoding approach. Journal of decisions and operations research, 4(4), 299-315.
Hashemi, E., Tavakoli Moghadam, R., & Bashiri, M. (2014). Proposing multi-objective mathematical model for design of multi-product forward and reverse logistics network. Journal of applied research on industrial engineering, 1(4), 208-229.
Holguín-Veras, J., Jaller, M., Aros-Vera, F., Amaya, J., Encarnación, T., & Wachtendorf, T. (2016). Disaster response logistics: Chief findings of fieldwork research. In Advances in managing humanitarian operations, 1, 33-57.
Holguín-Veras, J., Taniguchi, E., Jaller, M., Aros-Vera, F., Ferreira, F., & Thompson, R. G. (2014). The Tohoku disasters: Chief lessons concerning the post disaster humanitarian logistics response and policy implications. Transportation research part A: policy and practice, 69, 86-104.
Hyodo, M., & Hori, T. (2013). Re-examination of possible great interplate earthquake scenarios in the Nankai Trough, southwest Japan, based on recent findings and numerical simulations. Tectonophysics, 600, 175-186.
Lin, Y. H., Batta, R., Rogerson, P. A., Blatt, A., & Flanigan, M. (2011). A logistics model for emergency supply of critical items in the aftermath of a disaster. Socio-economic planning sciences, 45(4), 132-145.
Noham, R., & Tzur, M. (2018). Designing humanitarian supply chains by incorporating actual post-disaster decisions. European journal of operational research, 265(3), 1064-1077.
Overstreet, R. E., Hall, D., Hanna, J. B., & Rainer, R. K. (2011). Research in humanitarian logistics. Journal of humanitarian logistics and supply chain management, 45(4), 132-145.
Paul, B. K., Acharya, B., & Ghimire, K. (2017). Effectiveness of earthquakes relief efforts in Nepal: opinions of the survivors. Natural hazards, 85(2), 1169-1188.
Qureshi, A. G., & Taniguchi, E. (2020). A multi-period humanitarian logistics model considering limited resources and network availability. Transportation research procedia, 46, 212-219.
Qureshi, A. G., & Taniguchi, E. (2017). A multi-period relief distribution model considering limited resources and decreasing resilience of affected population. Journal of the eastern asia society for transportation studies, 12, 57-73.
Rath, S., & Gutjahr, W. J. (2014). A math-heuristic for the warehouse location–routing problem in disaster relief. Computers & operations research, 42, 25-39.
Rezaei-Malek, M., Tavakkoli-Moghaddam, R., Zahiri, B., & Bozorgi-Amiri, A. (2016). An interactive approach for designing a robust disaster relief logistics network with perishable commodities. Computers & industrial engineering, 94, 201-215.
Sabouhi, F., Bozorgi-Amiri, A., Moshref-Javadi, M., & Heydari, M. (2019). An integrated routing and scheduling model for evacuation and commodity distribution in large-scale disaster relief operations: a case study. Annals of operations research, 283(1), 643-677.
Salimi, A., Tavakoli Moghadam, R., & Bashiri, M. (2015). Designing reverse logistics network with a social approach to recycle great household waste under uncertainty conditions. Journal of applied research on industrial engineering, 2(3), 168-179.
Samani, M. R. G., Torabi, S. A., & Hosseini-Motlagh, S. M. (2018). Integrated blood supply chain planning for disaster relief. International journal of disaster risk reduction, 27, 168-188.
Savadkoohi, E., Mousazadeh, M., & Torabi, S. A. (2018). A possibilistic location-inventory model for multi-period perishable pharmaceutical supply chain network design. Chemical engineering research and design, 138, 490-505.
Settanni, E., Harrington, T. S., & Srai, J. S. (2017). Pharmaceutical supply chain models: A synthesis from a systems view of operations research. Operations research perspectives, 4, 74-95.
Sheu, J. B., & Pan, C. (2015). Relief supply collaboration for emergency logistics responses to large-scale disasters. Transportmetrica A: transport science, 11(3), 210-242.
Tzeng, G. H., Cheng, H. J., & Huang, T. D. (2007). Multi-objective optimal planning for designing relief delivery systems. Transportation research part E: logistics and transportation review, 43(6), 673-686.
Van Wassenhove, L. N., & Pedraza Martinez, A. J. (2012). Using OR to adapt supply chain management best practices to humanitarian logistics. International transactions in operational research, 19(1-2), 307-322.
Wang, H., Du, L., & Ma, S. (2014). Multi-objective open location-routing model with split delivery for optimized relief distribution in post-earthquake. Transportation research part E: logistics and transportation review, 69, 160-179.
Yáñez-Sandivari, L., Cortés, C. E., & Rey, P. A. (2020). Humanitarian Logistics and Emergencies Management: New perspectives to a sociotechnical problem and its optimization approach management. International Journal of Disaster Risk Reduction,19(22), 307-322.
Zahiri, B., Jula, P., & Tavakkoli-Moghaddam, R. (2018). Design of a pharmaceutical supply chain network under uncertainty considering perishability and substitutability of products. Information sciences, 423, 257-283.