نوع مقاله : مقاله پژوهشی - کاربردی

نویسندگان

1 پژوهشکده تحقیق در عملیات بهین کارا پژوه، تهران، ایران.

2 دانشکده ریاضی، دانشگاه علم و صنعت ایران، تهران، ایران.

10.22105/dmor.2021.261944.1283

چکیده

وفاداری مشتری وابستگی قابل توجهی به میزان رضایت مشتری از خدمات ارائه شده دارد. بنابراین رضایت‌مندی مشتری در بخش خدمات غیرحضوری مانند بانکداری الکترونیک، افتتاح حساب غیرحضوری و غیره را می توان به عنوان یک استراتژی رقابتی اثربخش به ویژه در شرایط فعلی به سبب پاندمی ویروس کرونا به حساب آورد. در این مطالعه، ابتدا با در نظر گرفتن کدهای وفاداری مناسب در سطح شعب بانک، محدویت‌های وزنی مناسب از نوع قیود ناحیه اطمینان نوع اول را تعریف کرده و به مدل پایه‌ای تحلیل پوششی داده‌ها می‌افزاییم. اندازه جدید به دست آمده از این مدل ریاضی، ناشی از تأثیر قیود وفاداری بوده و دارای قدرت تفکیک‌پذیری بیشتری نسبت به مدل پایه‌‌ای خواهد بود. سپس فاکتور وفاداری هر شعبه به صورت نسبت اندازه مدل جدید به مدل پایه‌ای، که عددی بین صفر و یک خواهد بود، تعریف می‌شود. سپس، مدل پیشنهادی در یک مطالعه موردی متشکل از 195 شعبه بانک مسکن پیاده‌سازی شده و نتایج مدل مورد تحلیل قرار می‌گیرند. نتایج نشان می‌دهند که فاکتور وفاداری با کیفیت خدمات غیرحضوری ارتباط مستقیم دارد و اندازه جدیدی از کارایی ناظر به میزان وفاداری مشتری به دست می‌آید.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Evaluating the role of bank absentee services in customer loyalty using data envelopment analysis

نویسندگان [English]

  • Parisa Nankali 1
  • Fatemeh Rakhshan 2
  • Mohammad Reza Alirezaee 2 1

1 Behin-Cara-Pajoh Operations Research Institute (BCaP), Tehran, Iran.

2 School of Mathematics, Iran University of Science and Technology, Tehran, Iran.

چکیده [English]

Customer loyalty is significantly dependent on customer satisfaction with the services provided. Therefore, customer satisfaction in offline services such as e-banking, offline account opening, etc. can be considered as an effective competitive strategy, especially in the current situation due to the corona virus pandemic. In this study, first, by considering the appropriate loyalty codes at the level of bank branches, we define the appropriate weight constraints of the type of confidence zone constraints of the first type and add them to the basic model of data envelopment analysis. The new size obtained from this mathematical model is due to the effect of loyalty constraints and will have more resolution than the basic model. The loyalty factor of each branch is then defined as the ratio of the size of the new model to the base model, which will be a number between zero and one. Then, the proposed model is implemented in a case study consisting of 195 branches of the Housing Bank and the results of the model are analyzed. The results show that the loyalty factor is directly related to the quality of in-person services and a new measure of efficiency is obtained to monitor customer loyalty.

کلیدواژه‌ها [English]

  • loyalty
  • data envelopment analysis
  • bank branches
  • assurance region weight restrictions
Alirezaee, M. R., Rakhshan, F., & Banaye Khoyi, B. (2018). Application of DEA-cross efficiency in portfolio selection of 20 reputable companies in the Iranian stock market. Journal of decisions and operations research, 3(1), 24-40. (In Persian). DOI: 10.22105/dmor.2018.63751
Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management science, 30(9), 1078-1092.
Bayraktar, E., Tatoglu, E., Turkyilmaz, A., Delen, D. & Zaim, S. (2012). Measuring the efficiency of customer satisfaction and loyalty for mobile phone brands with DEA. Journal of expert systems with applications, 39(1), 99-106.
Bowen, G. & Shoemaker, S. (2003). Loyalty: a strategic commitment. Cornell hotel and restaurant administration quarterly, 44(5-6), 31-46. DOI: 10.1016/S0010-8804(03)90105-4
Camanho, A. S., & Dyson, R. G. (2005). Cost efficiency measurement with price uncertainty: a DEA application to bank branch assessments. European journal of operational research, 161(2), 432-446.
Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European journal of operational research, 2(6), 429-444.
Dick, A. S., & Basu, K. (1994). Customer loyalty: toward an integrated conceptual framework. Journal of the academy of marketing science, 22(2), 99-113.
Fornell, C. (2001). The science of satisfaction. Harvard business review, 79(3), 120-121.
Jahangiri, A. (2019). Application of data envelopment analysis technique in Iran banking system. Journal of decisions and operations research, 3(4), 368-401. (In Persian). DOI: 10.22105/dmor.2018.82229
Johnson, M. D., Gustafsson, A., Andreassen, T. W., Lervik, L., & Cha, J. (2001). The evolution and future of national customer satisfaction index models. Journal of economic psychology, 22(2), 217-245.
Keller, K. L. (1993). Conceptualizing, measuring, and managing customer-based brand equity. Journal of marketing, 57(1), 1-22.
Kim, W. G., & Cha, Y. (2002). Antecedents and consequences of relationship quality in hotel industry. International journal of hospitality management, 21(4), 321-338.
Mihelis, G., Grigoroudis, E., Siskos, Y., Politis, Y. & Malandrakis, Y. (2001). Customer satisfaction measurement in the private bank sector. European journal of operational research, 130(2), 347-360.
Paradi, J. C., & Zhu, H. (2013). A survey on bank branch efficiency and performance research with data envelopment analysis. Omega, 41(1), 61-79.
Podinovski, V. V., & Thanassoulis, E.  (2007). Improving discrimination in data envelopment analysis: some practical suggestions. Journal of productivity analysis, 28(1), 117-126.
Sharma, N., & Patterson, P.G. (2000). Switching costs, alternative attractiveness and experience as moderators of relationship commitment in professional, consumer services. International journal of service industry management, 11(5), 470-490.
Vaezi, E., & Memarpour, M. (2018). Evaluation of the performance and ranking of the efficiency of Tehran branches of a private bank using two-stage data envelopment analysis and Borda ranking technique. Journal of decision making and operations research, 2(2), 116-129. (In Persian). DOI: 10.22105/dmor.2018.55774
Wirtz, J., (2003). Halo in customer satisfaction measures: The role of purpose of rating, number of attributes and customer involvement. International journal of service industry management, 14(1), 96-119.
Zeithaml, V.A.  (1988). Consumer perceptions of price, quality, and value: a means-end model and synthesis of evidence. Journal of marketing, 52(3), 2-22.