نوع مقاله : مقاله پژوهشی - کاربردی

نویسندگان

1 دانشجوی دکتری تحقیق در عملیات، دانشکده مدیریت و حسابداری، دانشگاه علامه طباطبائی، تهران، ایران.

2 گروه مدیریت صنعتی، دانشکده مدیریت و حسابداری، دانشگاه علامه طباطبائی، تهران، ایران.

3 گروه مدیریت صنعتی، دانشکده اقتصاد، مدیریت و حسابداری دانشگاه یزد، یزد، ایران

10.22105/dmor.2021.265922.1296

چکیده

هدف: ارائه یک مدل موازنه زمان – هزینه –کیفیت با سه تابع هدف، کمینه کردن زمان ختم پروژه، کمینه کردن هزینه کل پروژه و بیشینه کردن کیفیت کل انجام فعالیت‌ها در یک شبکه PERT با فعالیت‌های چندحالته می­باشد.
روش‌شناسی پژوهش: بعد از ارائه مدل ریاضی مناسب، بر اساس طراحی آزمایشات، سطوح ممکن هر متغیر تصمیم تعیین شد. سپس با استفاده از فرایند شبیه‌سازی، مقادیر تصادفی متغیرهای تصمیم و متغیرهای پاسخ در هر بار اجرا حاصل و با به کارگیری شبکه‌های عصبی، یک مدل شبکه عصبی برقرار کردیم. برای حل این مدل، از دو الگوریتم NSGA-II و MOPSO استفاده شد.
یافته‌ها: برای ارزیابی کارایی مدل، مدل طراحی شده در بخش نگهداری و تعمیرات شرکت فولادسازی آبتین اردکان پیاده‌سازی و اجرا شد. با توجه به نتایج به دست آمده مشخص شده که الگوریتم NSGA-II کارایی بهتری نسبت به الگوریتم MOPSO دارد.
اصالت/ارزش افزوده علمی: در این مقاله مدلی ارائه شد که با حذف مفروضات غیرواقعی و لحاظ نمودن واقعیت­های پروژه نسبت به مدل­های ارائه شده در این زمینه به واقعیت نزدیک­تر بوده و در عمل کاربرد بیشتری نیز داشته باشد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Designing Time-Cost-Quality Trade-Off Model in Multimodal PERT Network using Simulations and NSGA-II And MOPSO Algorithms

نویسندگان [English]

  • Ahmad Yousefi Hanoomarvar 1
  • Maghsoud Amiri 2
  • Laya Olfat 2
  • Alireza Naser Aadrabadi 3

1 PhD. Student in Operation Research, Faculty of Management and Accounting, Allameh Tabataba’i University, Tehran, Iran

2 Department of Industrial Management, Faculty of Management and Accounting, Allameh Tabataba’i University, Tehran, Iran

3 Department of Industrial Management, Faculty of Economics, Management and Accounting, Yazd University, Yazd, Iran

چکیده [English]

Purpose: The proposed model is a time-cost-quality trade-off model with three objective functions: minimizing project completion time, minimizing total project cost, and maximizing total quality of activities in a PERT network with multi-mode activities.
Methodology: After presenting the appropriate mathematical model, based on the design of the experiments, the possible levels of each decision variable were determined. Then, using the simulation process, random values ​​of decision variables and response variables were obtained each time, and by using neural networks, we established a neural network model. To solve this model, two algorithms NSGA-II and MOPSO were used.
Findings: To evaluate the efficiency of the model, the designed model was implemented in the maintenance department of Abtin Ardakan Steel Company. According to the results, it is found that the NSGA-II algorithm has better performance than the MOPSO algorithm.
Originality/Value: In this paper, a model was presented that by eliminating unrealistic assumptions and taking into account the realities of the project is closer to reality than the models presented in this field and has more application in practice.

کلیدواژه‌ها [English]

  • PERT Network
  • Neural Network
  • Design of experiments
  • project management
  • Time-Cost-Quality trade-off
Aghdaee, E., & Husseinzadeh Kashan, A. (2018). An approach based on Leagues Championship Algorithm (LCA) and Kalman Filter for multi-objective project scheduling problem and predicting the time progress. Journal of decisions and operations research3(2), 99-113. (In Persian). http://www.journal-dmor.ir/article_65519.html?lang=en
Aminbakhsh, S., & Sonmez, R. (2016). Discrete particle swarm optimization method for the large-scale discrete time–cost trade-off problem. Expert systems with applications, 51, 177-185. https://doi.org/10.1016/j.eswa.2015.12.041
Amiri, M., Abtahi, A. R., & Khalili-Damghani, K. (2013). Solving a generalised precedence multi-objective multi-mode time-cost-quality trade-off project scheduling problem using a modified NSGA-II algorithm. International journal of services and operations management, 14(3), 355-372.
Amiri, M., Azimi, P., Zandieh, M., & Hadi Nejad, F. (2017). Optimizing the reliability of military equipment and weapons with a hybrid approach of simulation and meta-algorithms. Military management quarterly, 16(64), 125-164. (In Persian). http://jmm.iranjournals.ir/article_26719.html
Azaron, A., & Tavakkoli-Moghaddam, R. (2007). Multi-objective time–cost trade-off in dynamic PERT networks using an interactive approach. European journal of operational research180(3), 1186-1200. https://doi.org/10.1016/j.ejor.2006.05.014
Azaron, A., Katagiri, H., & Sakawa, M. (2007). Time-cost trade-off via optimal control theory in Markov PERT networks. Annals of operations research150(1), 47-64. https://doi.org/10.1007/s10479-006-0149-x
Azaron, A., Perkgoz, C., & Sakawa, M. (2005). A genetic algorithm approach for the time-cost trade-off in PERT networks. Applied mathematics and computation168(2), 1317-1339. https://doi.org/10.1016/j.amc.2004.10.021
Azimi, P., Ismati, A., Farajpour, M., & Farzin, E. (2013). Optimization via simulation with ED Software Comprehensive Training. Qazvin Branch, Islamic Azad University. (In Persian). https://www.qiau.ac.ir/PublicationCenter/publishCenter.aspx?key=book
Babu, A. J. G., & Suresh, N. (1996). Project management with time, cost, and quality considerations. European journal of operational research88(2), 320-327. https://doi.org/10.1016/0377-2217(94)00202-9
Baradaran, S., Ghomi, S. F., Mobini, M., & Hashemin, S. S. (2010). A hybrid scatter search approach for resource-constrained project scheduling problem in PERT-type networks. Advances in engineering software,41(7-8), 966-975. https://doi.org/10.1016/j.advengsoft.2010.05.010
Bouleimen, K. L. E. I. N., & Lecocq, H. O. U. S. N. I. (2003). A new efficient simulated annealing algorithm for the resource-constrained project scheduling problem and its multiple mode version. European journal of operational research149(2), 268-281. https://doi.org/10.1016/S0377-2217(02)00761-0
Chambari, A., Rahmati, S. H. A., & Najafi, A. A. (2012). A bi-objective model to optimize reliability and cost of system with a choice of redundancy strategies. Computers & industrial engineering63(1), 109-119. https://doi.org/10.1016/j.cie.2012.02.004
Charnes, A. C. O. O. P., Cooper, W. W., & Thompson, G. L. (1964). Critical path analyses via chance constrained and stochastic programming. Operations research12(3), 460-470. https://doi.org/10.1287/opre.12.3.460
Cho, J. G., & Yum, B. J. (1997). An uncertainty importance measure of activities in PERT networks. International journal of production research35(10), 2737-2758. https://doi.org/10.1080/002075497194426
Coello, C. A. C., Lamont, G. B., & Van Veldhuizen, D. A. (2007). Evolutionary algorithms for solving multi-objective problems(Vol. 5, pp. 79-104). New York: Springer.
Coello, C. C., & Lechuga, M. S. (2002, May). MOPSO: A proposal for multiple objective particle swarm optimization. Proceedings of the 2002 congress on evolutionary computation. CEC'02 (Cat. No. 02TH8600) (Vol. 2, pp. 1051-1056). IEEE. DOI: 1109/CEC.2002.1004388
Czyzżak, P., & Jaszkiewicz, A. (1998). Pareto simulated annealing—a metaheuristic technique for multiple‐objective combinatorial optimization. Journal of multicriteria decision analysis, 7(1), 34-47. https://doi.org/10.1002/(SICI)1099-1360(199801)7:1<34::AID-MCDA161>3.0.CO;2-6
Deb, K., Agrawal, S., Pratap, A., & Meyarivan, T. (2000, September). A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. International conference on parallel problem solving from nature(pp. 849-858). Berlin, Heidelberg: Springer.
Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation6(2), 182-197. DOI: 1109/4235.996017
Hosny, O., & Elbassuony, M. (2018). Stochastic time-cost-quality trade-off analysis: the PERT approach. Construction research congress 2018(pp. 346-355). https://ascelibrary.org/doi/10.1061/9780784481271.034
Jaferi, F., Sajadi, S. M., Alinaghian, M., & Beyranvand, M. (2014). Investigationof project communication managementin project-basedorganizations using the PMBOK guideline. Journal of applied research on industrial engineering1(3), 130-135.
Jolai, F., Asefi, H., Rabiee, M., & Ramezani, P. (2013). Bi-objective simulated annealing approaches for no-wait two-stage flexible flow shop scheduling problem. Scientia Iranica20(3), 861-872. https://doi.org/10.1016/j.scient.2012.10.044
Karimi, N., Zandieh, M., & Karamooz, H. R. (2010). Bi-objective group scheduling in hybrid flexible flowshop: a multi-phase approach. Expert systems with applications37(6), 4024-4032. https://doi.org/10.1016/j.eswa.2009.09.005
Kazaz, A., Ulubeyli, S., Er, B., & Acikara, T. (2016). Construction materials-based methodology for time-cost-quality trade-off problems. Procedia engineering164, 35-41. https://doi.org/10.1016/j.proeng.2016.11.589
Kennedy, J., & Eberhart, R. (1995, November). Particle swarm optimization. In Proceedings of ICNN'95-international conference on neural networks(Vol. 4, pp. 1942-1948). IEEE.
Khang, D. B., & Myint, Y. M. (1999). Time, cost and quality trade-off in project management: a case study. International journal of project management17(4), 249-256. https://doi.org/10.1016/S0263-7863(98)00043-X
Kulkarni, V. G., & Adlakha, V. G. (1986). Markov and Markov-regenerative PERT networks. Operations research34(5), 769-781. https://doi.org/10.1287/opre.34.5.769
Maghsoudlou, H., Afshar-Nadjafi, B., & Niaki, S. T. A. (2016). A multi-objective invasive weeds optimization algorithm for solving multi-skill multi-mode resource constrained project scheduling problem. Computers & chemical engineering88, 157-169. https://doi.org/10.1016/j.compchemeng.2016.02.018
Martin, J. J. (1965). Distribution of the time through a directed, acyclic network. Operations research13(1), 46-66. https://doi.org/10.1287/opre.13.1.46
Mrad, M., Al-Gahtani, K. S., Hulchafo, R., Souayah, N., & Bamatraf, K. (2019). Risk assessment for discrete stochastic time-cost-quality trade-off problem using simulation-based integer linear programming approach. IEEE access7, 32453-32463. DOI: 1109/ACCESS.2019.2903229
Mungle, S., Benyoucef, L., Son, Y. J., & Tiwari, M. K. (2013). A fuzzy clustering-based genetic algorithm approach for time–cost–quality trade-off problems: a case study of highway construction project. Engineering applications of artificial intelligence26(8), 1953-1966. https://doi.org/10.1016/j.engappai.2013.05.006
Poli, R., Kennedy, J., & Blackwell, T. (2007). Particle swarm optimization. Swarm intelligence1(1), 33-57. https://doi.org/10.1007/s11721-007-0002-0
Project Management Institute. (2018). A guide to the project management body of knowledge (PMBOK® Guide)-(JAPANESE). Project management institute.
Rabbani, M., Aghamohamadi, S., Farrokhi-Asl, H., & Alavi Mofrad, M. (2017). A taghuchi based multi objective time-cost constrained scheduling for resource availability cost problem: a case study. International journal of research in industrial engineering6(4), 269-282.
Rashidi b Mohsen, Shiralizadeh Mohsen, Sharifzadeh Hadi. (2012). Review and Prediction Relation between Share Return and Market Variables by Using of Artificial Neural Networks. The review of financial and accounting studies, Issue 3.
Rogers, A., & Prügel-Bennett, A. (1999). Modelling the dynamics of a steady-state genetic algorithm. Foundations of genetic algorithms5, 57-68.
Saif, A., Abbas, S., & Fayed, Z. (2015). The PDBO algorithm for discrete time, cost and quality trade-off in software projects with expressing quality by defects. Procedia computer science65, 930-939. https://doi.org/10.1016/j.procs.2015.09.065
Shahsavari Pour, N., Modarres, M., Aryanejad, M., & Moghadam, R. T. (2010). The discrete time-cost-quality trade-off problem using a novel hybrid genetic algorithm. Applied mathematical sciences4(42), 2081-2094.
Tareghian, H. R., & Taheri, S. H. (2006). On the discrete time, cost and quality trade-off problem. Applied mathematics and computation181(2), 1305-1312. https://doi.org/10.1016/j.amc.2006.02.029
Tran, D. H., Cheng, M. Y., & Cao, M. T. (2015). Hybrid multiple objective artificial bee colony with differential evolution for the time–cost–quality tradeoff problem. Knowledge-based systems74, 176-186. https://doi.org/10.1016/j.knosys.2014.11.018
Zitzler, E., Deb, K., & Thiele, L. (2000). Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary computation8(2), 173-195. DOI: 1162/106365600568202