نوع مقاله : مقاله پژوهشی - کاربردی

نویسندگان

دانشکده مهندسی صنایع، دانشگاه علم و صنعت، تهران، ایران.

10.22105/dmor.2021.276092.1332

چکیده

هدف: خواص شیمیایی عنصر شیمیایی تکنسیم-99 منجر به تقاضای زیاد آن در رویه‌های تصویربرداری پزشکی شده است. در سال‌های اخیر، محصول واپاشی شده عنصر مولیبدنیم-99 ( تکنسیم-99) در بازارهای جهانی به دلیل کمبود، باعث گران‌قیمت شدن این محصول شده است. در این مطالعه، سناریوهایی جهت بیشینه‌سازی خروجی تکنسیم-99 ارائه می‌شود. به کمک این عنصر شیمیایی بسیاری از پرتوداروهای حوزه تصویربرداری تولید می‌شوند.
روش‌شناسی پژوهش: در این مطالعه، رابطه بازگشتی برای شبیه‌سازی رفتار واپاشی عنصر تکنسیم-99 اثبات شده است. سپس، شرایط لازم و کافی بهینگی برای این تابع اسخراج می‌شود .
یافته‌ها: سناریوهای بهینه برای توزیع پرتودارو در زمان‌های مناسب با توجه به شرایط کلینیکی و فیزیک هسته‌ای ارائه گردید. این سناریوها باعث استخراج بیشترین خروجی از ژنراتور تولیدکننده تکنسیم-99 می‌شود.
اصالت/ارزش افزوده علمی: در این مطالعه، مدل ریاضی جهت بیشینه‌سازی استخراج پرتوداروها در مرکز تصویربرداری مولکولی ارائه گردید. این مدل ریاضی کاربردهای عملی برای پزشکان، تکنولوژیست‌ها و تکنسین‌های حوزه پزشکی هسته‌ای به همراه دارد

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

A Mathematical Model for Production and Inventory Management of Time-sensitive Pharmaceutical in a Molecular Imaging Center

نویسندگان [English]

  • Mohammad Namakshenas
  • Mohammad Mahdavi Mazdeh

Faculty of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran.

چکیده [English]

Purpose: The chemical attributes of Technetium-99m have made it popular for most medical imaging procedures. However, in recent years, the decay product of molybdenum-99, i.e., technetium-99m, has become expensive, and its routine availability can no longer be taken for granted. We proposed scenarios to maximize the throughput of Technetium-99m which is used to produce radiopharmaceuticals in a medical imaging center.
Methodology: We proved a recursive function to imitate the decay dynamics of Technetium-99m, which is used in 80 percent of medical imaging. Then, we proved necessary and sufficient optimality analysis for this function.
Findings: We found optimal scenarios for distributing the radiopharmaceuticals into elusion periods according to clinical considerations.
Originality/Value: We developed a rigorous mathematical model based to maximize the throughput of radiopharmaceuticals in a molecular imaging center.

کلیدواژه‌ها [English]

  • mathematical model
  • Optimality conditions
  • Pharmaceutical management
  • molecular imaging
Bazaraa, M. S., Sherali, H. D., & Shetty, C. M. (2013). Nonlinear programming: theory and algorithms. John Wiley & Sons.
Cherry, S. R., Sorenson, J. A., & Phelps, M. E. (2012). Physics in nuclear medicine e-Book. Elsevier Health Sciences.
Edalatpanah, S. A. (2019). A nonlinear approach for neutrosophic linear programming. Journal of applied research on industrial engineering, 6(4), 367-373.
Edam, A. N., Sulieman, A., Sam, A. K., Salih, I., Alkhorayef, M., & Bradley, D. A. (2020). Quality control of radiopharmaceuticals and diagnostic nuclear medicine equipment. Radiation physics and chemistry, 167, 108247.
Edam, A. N., Sulieman, A., Tamam, N., Abuelhaia, E., Salih, I., Sam, A. K., ... & Bradley, D. A. (2021). Current Sudan protective practice in diagnostic nuclear medicine and patient dose. Radiation physics and chemistry, 178, 108997.
Nagurney, A., & Nagurney, L. S. (2012). Medical nuclear supply chain design: A tractable network model and computational approach. International journal of production economics, 140(2), 865-874.
Namakshenas, M., & Pishvaee, M. S. (2019). Data-driven robust optimization. Robust and constrained optimization: methods and applications, 1-40.
Peykani, P., Mohammadi, E., & Emrouznejad, A. (2021). An adjustable fuzzy chance-constrained network DEA approach with application to ranking investment firms. Expert systems with applications, 166, 113938.
Peykani, P., Mohammadi, E., Saen, R. F., Sadjadi, S. J., & Rostamy‐Malkhalifeh, M. (2020). Data envelopment analysis and robust optimization: A review. Expert systems, 37(4), e12534.
Rahpeymaii, F., & Kimiaei, M. (2017). A Barzilai Borwein adaptive trust-region method for solving systems of nonlinear equation. International journal of research in industrial engineering, 6(4), 339-349.
Ruddell, J. H., Eltorai, A. E., Tang, O. Y., Suskin, J. A., Dibble, E. H., Oates, M. E., & Yoo, D. C. (2020). The current state of nuclear medicine and nuclear radiology: workforce trends, training pathways, and training program websites. Academic radiology, 27(12), 1751-1759.
Soleymanpour Bakefayat, A. (2018). Solving nonlinear optimization via Nelder-Mead optimization method. Journal of decisions and operations research, 3(1), 1-10. (In Persian). https://dx.doi.org/10.22105/dmor.2018.63496
Suthummanon, S., Omachonu, V. K., & Akcin, M. (2005). Applying activity-based costing to the nuclear medicine unit. Health services management research, 18(3), 141-150.
Zolle, I., Bremer, P. O., & Jánoki, G. (2007). Monographs of 99m Tc pharmaceuticals. In Zolle I. (eds), Technetium-99m pharmaceuticals (pp. 173-337). Berlin, Heidelberg: Springer.