نوع مقاله : مقاله پژوهشی

نویسندگان

گروه ریاضی، دانشکده ریاضی، دانشگاه سیستان و بلوچستان، زاهدان، ایران.

10.22105/dmor.2021.240337.1187

چکیده

هدف: در حالت کلی، تعیین جواب‌های موثر مدل برنامه‌ریزی کسری خطی چند هدفه بازه‌ای(IMOLFP‎)  یک مسئله ‎PN- سخت است. ‏تاکنون روش کارآمدی برای تعیین جواب‌های موثر در این زمینه ارائه نشده است. بنابراین نیاز به یک روش مناسب برای تعیین جواب‌های موثر ‎‎‎IMOLFP‎‎  وجود دارد. ما می‌خواهیم الگوریتم‌هایی را معرفی کنیم که برای اولین‌بار جواب‌های موثر قوی و ضعیف IMOLFP‎‎  بدست آیند.
روش‌شناسی پژوهش: در این ‏مقاله‏، دو الگوریتم معرفی می‌کنیم به‌طوری‌که در یکی، شدنی قوی نامعادلات و در دیگری، شدنی ضعیف نامعادلات در نظر گرفته می‌شود (یک دستگاه نامعادلات، شدنی قوی است اگر و تنها اگر کوچک‌ترین ناحیه آن شدنی باشد و یک دستگاه نامعادلات، شدنی ضعیف است اگر و تنها اگر بزرگ‌ترین ناحیه آن شدنی باشد). توابع هدف IMOLFP را به توابع هدف خطی حقیقی تبدیل نموده و سپس به یک مدل برنامه‌ریزی خطی تک هدفه تبدیل می‌کنیم و در هر تکرار، محدودیت جدید به ناحیه شدنی اضافه می‌کنیم. با انتخاب یک نقطه دلخواه از ناحیه شدنی به‌عنوان نقطه شروع و استفاده از الگوریتم‌های پیشنهادی‏، جواب‌های موثر قوی و ضعیف  IMOLFP را بدست می‌آوریم.
یافته‌ها: در هر دو الگوریتم پیشنهادی، با انتخاب نقاط دلخواه جواب  موثر بدست می‌آوریم و با تغییر نقطه‌ی شروع‏، یک نقطه‌ی جدید به‌عنوان جواب موثر بدست می‌آوریم.
اصالت/ارزش افزوده علمی: در این پژوهش توانسته‌ایم برای اولین بار جواب‌های موثر قوی و ضعیف مدل  IMOLFP بدست آوریم.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Two iterative algorithms for determining strongly and weakly efficient solutions of interval multi objective linear fractional programming problem

نویسندگان [English]

  • Mehdi Allahdadi
  • Fatemeh Salary Pour Sharif Abad
  • Hassan Mishmast Nehi

Mathematics Department, University of Sistan and Baluchestan, Zahedan, Iran

چکیده [English]

Purpose: Determining efficient solutions of the Interval Multi Objective Linear Fractional Programming (IMOLFP) model is generally an NP-hard problem. For determining the efficient solutions, an effective method has not yet been proposed. So, we need to have an appropriate method to determine the efficient solutions of the IMOLFP. For the first time, we want to introduce algorithms in which the strongly and weakly efficient solutions of the IMOLFP are obtained.
Methodology: In this paper, we introduce two algorithms such that in one, strongly feasible of inequalities and in the other, weakly feasible of inequalities are considered (A system of inequalities is strongly feasible if and only if the smallest region is feasible, and a system of inequalities is weakly feasible if and only if the largest region is feasible). We transform the objective functions of the IMOLFP to real linear functions and t‎hen convert to a single objective linear model and then in each iteration of the algorithm, we add some new constraints to the feasible region. By selecting an arbitrary point of the feasible region as start point and using the proposed algorithms, we obtain the strongly and weakly efficient solutions of the IMOLFP.
Findings:  In both proposed algorithms, we obtain an efficient solution by selecting the arbitrary points, and by changing the starting point, we obtain a new point as the efficient solution.
Originality/Value: In this research, for the first time, we have been able to obtain the strongly and weakly efficient solutions of the IMOLFP.

کلیدواژه‌ها [English]

  • Multi Objective Programming
  • Interval linear fractional programming
  • Strongly efficient solution
  • Weakly efficient solution
Alefeld‎, ‎G.‎, & Herzberger‎, ‎J.‎ (1983). ‎Introduction to interval computations‎. ‎Academic press‎.
Bhurjee, A. K., & Panda, G. (2015). Multi-objective interval fractional programming problems: an approach for obtaining efficient solutions. Opsearch52(1), 156-167.
Borza, M., Rambely, A. S., & Saraj, M. (2012). Solving linear fractional programming problems with interval coefficients in the objective function, a new approach. Applied mathematical sciences6(69), 3443-3452.
Charnes, A., & Cooper, W. W. (1962). Programming with linear fractional functionals. Naval research logistics quarterly9(3‐4), 181-186.‎.
Chinnadurai, V., & Muthukumar, S. (2016). Solving the linear fractional programming problem in a fuzzy environment: numerical approach. Applied mathematical modelling40(11-12), 6148-6164.
Das, S. K., & Mandal, T. (2017). A MOLFP method for solving linear fractional programming under fuzzy environment. International journal of research in industrial engineering6(3), 202-213.
Dinkelbach, W. (1967). On nonlinear fractional programming. Management science13(7), 492-498.
Ebrahimnejad, A., Ghomi, S. J., & Mirhosseini-Alizamini, S. M. (2018). A revisit of numerical approach for solving linear fractional programming problem in a fuzzy environment. Applied mathematical modelling57, 459-473.
Ehrgott, M. (2005). Multicriteria optimization (Vol. 491). Springer.
Falk, J. E., & Palocsay, S. W. (1994). Image space analysis of generalized fractional programs. Journal of global optimization4(1), 63-88.
Fiedler, M., Nedoma, J., Ramík, J., Rohn, J., & Zimmermann, K. (2006). Linear optimization problems with inexact data. Springer.
Hladík, M. (2010). Generalized linear fractional programming under interval uncertainty. European journal of operational research205(1), 42-46.
Jeyakumar, V., Li, G. Y., & Srisatkunarajah, S. (2013). Strong duality for robust minimax fractional programming problems. European journal of operational research228(2), 331-336.
Kumar-Das, S. (2019). A new method for solving fuzzy linear fractional programming problem with new ranking function. International journal of research in industrial engineering8(4), 384-393.
Mostafaee, A., & Hladík, M. (2020). Optimal value bounds in interval fractional linear programming and revenue efficiency measuring. Central European journal of operations research28(3), 963-981.
Nayak, S., & Ojha, A. (2015). Generating Pareto optimal solutions of multi-objective LFPP with interval coefficients using∊-constraint method. Mathematical modelling and analysis20(3), 329-345.
Nayak, S., & Ojha, A. K. (2019). Multi-objective linear fractional programming problem with fuzzy parameters. In soft computing for problem solving (pp. 79-90). Springer, Singapore.
Rivaz, S., & Yaghoobi, M. A. (2013). Minimax regret solution to multiobjective linear programming problems with interval objective functions coefficients. Central European journal of operations research21(3), 625-649.
Shaocheng, T. (1994). Interval number and fuzzy number linear programmings. Fuzzy sets and systems66(3), 301-306.
Sun, X. K., & Chai, Y. (2014). On robust duality for fractional programming with uncertainty data. Positivity18(1), 9-28.
Taghi-Nezhad, N. A., & Babakordi, F. (2019). Fuzzy quadratic programming with non-negative parameters: a solving method based on decomposition. Journal of decisions and operations research, 3(4), 325-332. (In Persian). https://doi.org/10.22105/DMOR.2019.84073
Valipour, E., Yaghoobi, M. A., & Mashinchi, M. (2014). An iterative approach to solve multiobjective linear fractional programming problems. Applied mathematical modelling38(1), 38-49.