نوع مقاله : مقاله کاربردی

نویسنده

گروه مهندسی صنایع، واحد علی‌آباد کتول، دانشگاه آزاد اسلامی، علی‌آباد کتول، ایران.

10.22105/dmor.2021.258329.1262

چکیده

در دهه اخیر روش­های تصمیم­گیری چند­معیاره کاربرد قابل توجهی برای ارزیابی واحدهای متعدد با شرح وظایف مشابه داشته است. یکی از روش‌های پرکاربرد که بر پایه مبانی ریاضی بنا شده است، روش تاپسیس می­باشد. به جهت آن­که سازوکار رتبه­بندی در روش تاپسیس بر مبنای فاصله­سنجی عملکرد از ایده آل مثبت و ایده آل منفی می­باشد و وجود داده­های دورافتاده[1] می­تواند تاثیر منفی روی محاسبات بگذارد، در این پژوهش اصلاح روش تاپسیس به گونه­ای که بتواند داده­های پرت را کنترل نماید در دستور کار قرار گرفته و الگوریتم اصلاح شده برای روش تاپسیس، معرفی شده است. با هدف اعتبارسنجی الگوریتم ارائه شده، عملکرد 1951 شعبه بانک کشاورزی در بخش مطالعه موردی، مورد ارزیابی قرار گرفت و نتایج با روش استاندارد تاپسیس مقایسه شده است. محاسبه روش تاپسیس اصلاح شده با در نظر گرفتن ضرایب مختلف کنترل پراکندگی داده­ها و بررسی ضرایب همبستگی نشان می­دهد که روش تاپسیس اصلاح شده توانسته به خوبی داده­های دورافتاده را کنترل نماید.



1 Outlier

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Modification of TOPSIS method to improve the results of performance evaluation of financial and credit institutions

نویسنده [English]

  • Rouhollah Kiani Ghaleh no

Department of Industrial Engineering, Aliabad Katoul Branch, Islamic Azad University, Aliabad Katoul, Iran.

چکیده [English]

In the last decade, multi-criteria decision making methods have been used extensively to evaluate multiple units with similar task descriptions. One of the most widely used methods, which is based on mathematical principles, is the TOPSIS method. ranking mechanism in TOPSIS method based on performance distance measurement is from positive ideal and negative ideal and the existence of Outlier-data can have a negative impact on the calculations. in this study the modification of TOPSIS method so that Be able to control Outlier-data, is on the agenda. For this purpose modified algorithm TOPSIS method is introduced. With the aim of validating the proposed algorithm, the performance of 1951 branches of agri-Bank in the case study section has been evaluated and the results have been compared with the standard TOPSIS method. Calculation of the modified TOPSIS method by considering different coefficients of data scatter control and examination of the correlation coefficients show that the modified TOPSIS method has been able to control Outlier data well.

کلیدواژه‌ها [English]

  • Decision Making
  • TOPSIS Technique
  • Outlier data (throw)
  • Bank
  • evaluation
Aghaei, M., Asadollahi, A., & Pakari, A. (2013). Ranking of Saman bank’s branches in Tehran on the basis of customer satisfaction factors by F.M.C.D.M models. International journal of scientific management and development, 1(1), 46-61.
Ajripour, I., Asadpour, M., & Tabatabaie, L. (2019). A model for organization performance management applying MCDM and BSC: a case study. Journal of applied research on industrial engineering, 6(1), 52-70.
Alidade, B., & Ghasemi, M. (2015). Ranking the branches of bank Sepah of Sistan Baluchistan using balanced score card and fuzzy multi-attribute decision-making methods. Research journal of recent sciences, 4(1), 17-24.
Garcia, F., Guijarro, F., & Moya, I. (2010). Ranking Spanish savings banks: a multicriteria approach. Matematical and computer modelling, 52(7-8), 1058-1065.
Ghorabaee, M. K., Amiri, M., Zavadskas, E. K., Turskis, Z., & Antucheviciene, J. (2017). A new multi-criteria model based on interval type-2 fuzzy sets and EDAS method for supplier evaluation and order allocation with environmental considerations. Computers & industrial engineering112, 156-174.
Guilherme, D., Leonardo, T., & Joao, M. (2019). Application of independent component analysis and TOPSIS to deal with dependent criteria in multicriteria decision problems. Expert systems with applications, 122, 262–280.
Hassanzadeh, R., & Asghari, H. (2020). Identification and ranking of affecting factors on sales and operations planning (S&OP) process implementation by using fuzzy AHP and fuzzy TOPSIS approach (case study: dairy industry). Journal of applied research on industrial engineering, 7(1),57-78.
Kazemi, A., & Mousavi, J. (2013). Ranking of private banks in iran using multiple attribute decision making methods. Journal of quantitative research in management, 4(3), 121-140. (In Persian). https://www.sid.ir/en/journal/ViewPaper.aspx?id=371790
Kumar, S., Kumar, S., & Barman, A. G. (2018). Supplier selection using fuzzy TOPSIS multi criteria model for a small-scale steel manufacturing unit. Procedia computer science133, 905-912.
 Mahmudi, A., & Bagherlou, H. (2014). Ranking the bank stock with multi-criteria decision-making method. 3th Iranian management & accounting conference. Tehran. (In Persian). https://civilica.com/doc/343060/
Motameni, A. R., Javadzadeh, M., & Tizfahm, M. (2010). The strategy performance evaluation of the banks. Journal of strategic management studies, 1, 141-159.
Secme, N., Bayrakdaroglu, A., & Kahraman, C. (2009). Fuzzy performance evaluation in Turkish banking sector using analytic hierarchy process and TOPSIS. Expert systems with applications, 36(9), 11699–11709.
Shaban, R., Banimahd, B., Hosseinzadeh Lotfi, F., & Nikoomaram, H. (2020). Evaluate the efficiency of audit firms using data envelopment analysis. Journal of decisions and operations research, 5(2), 402-413. (In Persian). http://dx.doi.org/10.22105/dmor.2020.236384.1160
Shahbandarzadeh, h. (2006). Design the method evaluated the performance bank branches by using multi criteria decision making techniques (Doctoral dissertation, University of Tehran). Retrieved from http://imj.iausdj.ac.ir/article_537058.html?lang=en
Wang, C. L., & Yoon, K. S. (1981). Multiple attribute decision making. Berlin: Spring-verlag.
Wang, E., Alp, N., Shi, J., Wang, C., Zhang, X., & Chen, H. (2017). Multicriteria building energy performance benchmarking through variable clustering based compromise TOPSIS with objective entropy weighting. Energy, 125, 197–210.
Wang, Z. X., Li, D. D., & Zheng, H. H. (2018). The external performance appraisal of China energy regulation: an empirical study using a TOPSIS method based on entropy weight and Mahalanobis distance. International journal of environmental research and public health, 15(2), 236.