نوع مقاله : مقاله پژوهشی - کاربردی

نویسندگان

1 گروه ریاضی، دانشکده علوم، دانشگاه ولایت، ایرانشهر، ایران

2 گروه ریاضی، دانشکده ریاضی، دانشگاه سیستان و بلوچستان، زاهدان، ایران.

10.22105/dmor.2021.238906.1177

چکیده

هدف: استفاده از اعداد فازی مردد به عنوان عامل ترکیب کننده دو نوع متداول ارزیابی: خودارزیابی و ارزیابی داوران، به منظور انجام ارزیابی‌های واقعی و عادلانه. به‌روزرسانی روش انتگرال چوکوئت برای استفاده از اعداد فازی مردد در فرآیند ارزیابی و استفاده از آن در حل مسائل تصمیم‌گیری مانند ارزیابی کارکنان و سازمان‌ها.
روش‌شناسی پژوهش: روش انجام این مطالعات بر الگوی مطالعات کتابخانه‌ای  استوار است.
یافتهها: نواقصی مانند نمایش ویترینی در دوره ارزیابی توسط ارزیاب‌شوندگان از یک سو، و عدم تسلط کافی داوران خارجی به برخی پیچیدگی‌های سازمانی و انگیزه‌های پیدا و پنهان ارزیاب‌شوندگان برای ارزیابی غیرواقعی در فرآیند خودارزیابی از سویی دیگر، در مواردی نتایج ارزیابی را به چالش می‌کشند، که این نقایص در مدل ارزیابی ترکیبی با استفاده از اعداد فازی مردد برطرف می‌شوند. علاوه براین، شاخص‌های ارزیابی در موارد بسیاری در تعامل با هم هستند و اصطلاحا بر همدیگر اثرات مثبت و منفی می‌گذارند. انتگرال چوکوئت قادر است این مهم را در نظر گرفته، ارزیابی را گامی دیگر به واقعی‌تر شدن نزدیک نماید. لذا توسعه محاسباتی آن با اعداد فازی مردد که در این مقاله مورد توجه بوده است، می‌تواند به نظام ارزیابی و عملکرد کارکنان و سازمان‌ها کمک شایانی نماید.




اصالت/ارزش افزوده علمی:  توسعه محاسباتی اعداد فازی مردد به کمک انتگرال چوکوئت، استفاده از انتگرال چوکوئت اعداد فازی مردد در حل مسائل تصمیم‌گیری چند شاخصه مانند ارزیابی کارکنان و سازمان‌ها.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Introducing a new model for evaluating and ranking employees, organizations and solving MADM problems in a hesitant fuzzy environment

نویسندگان [English]

  • Abazar Keikha 1
  • Hassan Mishmast Nehi 2

1 Department of Mathematics, Faculty of siences, Velayat University, Iranshahr, Iran.

2 Department of Mathematics, Faculty of Mathematics, University of Sistan and Baluchestan, Zahedan, Iran.

چکیده [English]

Purpose: Using hesitant fuzzy numbers as a combination of two common types of evaluation: self-evaluation and evaluation by judges, in order to make real and fair evaluations. Updating the Choquet integral method to apply with hesitant fuzzy numbers in the evaluation process, and use it to solve decision problems such as evaluating employees and organizations.
 Methodology:  The method of conducting these studies is based on the pattern of library studies.</p
Findings:  Deficiencies such as showcasing the evaluators during the evaluation period on the one hand, and the lack of mastery of external judges on some organizational complexities and the apparent and hidden motivations of the evaluators for unrealistic evaluation in the self-evaluation process, on the other hand, are some of factors that challenge the evaluation results, and these defects in the hybrid evaluation model are eliminated using hesitant fuzzy numbers. In addition, evaluation indicators in many cases interact with each other and have so-called positive and negative effects on each other. Choquet Integral is able to take this into account and take the assessment one step closer to becoming more realistic. Therefore, its computational development with hesitant fuzzy numbers, which has been considered in this article, can helps the evaluation system and performance of employees and organizations.
Originality/Value:  Computational development of hesitant fuzzy numbers with the help of Choquet integral, using the Choquet integral of hesitant fuzzy numbers in solving multi-criteria decision making problems such as employee and organizational evaluation.

کلیدواژه‌ها [English]

  • Choquet integral
  • Hesitant fuzzy numbers
  • Ranking of alternatives
  • Multi attribute decision making problems
Atanassov, K. (2016). Intuitionistic fuzzy sets. International journal bioautomation, 20(S1), S1-S6. https://www.proquest.com/openview/488e821e83b74821060562dc9b20f49e/1?pq-origsite=gscholar&cbl=4720765
Deli, I. (2020). A TOPSIS method by using generalized trapezoidal hesitant fuzzy numbers and application to a robot selection problem. Journal of intelligent & fuzzy systems, 38(1), 779-793. DOI: 10.3233/JIFS-179448
Denoeux, T. (2014). Dempster-Shafer theory, Introduction, connections with rough sets and application to clustering.
 RSKT, Shanghai, China. https://www.hds.utc.fr/~tdenoeux/dokuwiki/_media/en/rskt2014.pdf
Garg, H., & Arora, R. (2020). TOPSIS method based on correlation coefficient for solving decision-making problems with intuitionistic fuzzy soft set information. AIMS mathematics, 5(4), 2944-2966. DOI: 10.3934/math.2020190
Garg, H., Keikha, A., & Mishmast Nehi, H. (2020). Multiple-attribute decision-making problem using TOPSIS and choquet integral with hesitant fuzzy number information. Mathematical problems in engineering. https://doi.org/10.1155/2020/9874951
Joshi, D., & Kumar, S. (2016). Interval-valued intuitionistic hesitant fuzzy Choquet integral based TOPSIS method for multi-criteria group decision making. European journal of operational research, 248(1), 183-191. https://doi.org/10.1016/j.ejor.2015.06.047
Keikha, A. (2016). Fuzzy Choquet integral and its application in multi-attribute decision making (Doctoral dissertation, University of Sistan and Baluchestan). (In Persian). https://scholar.google.com/citations?view_op=list_works&hl=en&hl=en&user=_3QbY6sAAAAJ
Keikha, A. (2021). Introducing a new type of HFSs and its application in solving MAGDM problems. Journal of intelligent & fuzzy systems, 40(5), 9333-9344.
Keikha, A., & Nehi, H. M. (2015). Fuzzified Choquet integral and its applications in MADM: a review and a new method. International journal of fuzzy systems, 17(2), 337-352. https://doi.org/10.1007/s40815-015-0037-0
Klir, G. J. (2006). Uncertainty and information: foundations of generalized information theory. Kybernetes, 35(7/8), 1297-1299. https://doi.org/10.1108/03684920610675283
 Lalotra, S., & Singh, S. (2020). Knowledge measure of hesitant fuzzy set and its application in multi-attribute decision-making. Computational and applied mathematics, 39(2), 1-31.
Liao, H., & Xu, Z. (2017). Hesitant fuzzy decision making methodologies and applications. Springer Singapore.
Liao, H., & Xu, Z. (2014a). Subtraction and division operations over hesitant fuzzy sets. Journal of intelligent & fuzzy systems, 27(1), 65-72.
Liao, H., & Xu, Z. (2014b). Some new hybrid weighted aggregation operators under hesitant fuzzy multi-criteria decision-making environment. Journal of intelligent & fuzzy systems, 26(4), 1601-1617.
Liao, H., & Xu, Z. (2015). Extended hesitant fuzzy hybrid weighted aggregation operators and their application in decision making. Soft computing, 19(9), 2551-2564.
Liao, H., Wu, X., Keikha, A., & Hafezalkotob, A. (2018). Power average-based score function and extension rule of hesitant fuzzy set and the hesitant power average operators. Journal of intelligent & fuzzy systems, 35(3), 3873-3882.
Liao, H., Xu, Z., & Xia, M. (2014a). Multiplicative consistency of hesitant fuzzy preference relation and its application in group decision making. International journal of information technology & decision making, 13(01), 47-76. https://doi.org/10.1142/S0219622014500035
Liao, H., Xu, Z., & Zeng, X. J. (2014b). Distance and similarity measures for hesitant fuzzy linguistic term sets and their application in multi-criteria decision making. Information sciences, 271, 125-142. https://doi.org/10.1016/j.ins.2014.02.125
Meng, F., Wang, C., & Chen, X. (2016). Linguistic interval hesitant fuzzy sets and their application in decision making. Cognitive computation, 8(1), 52-68.
Pollack, H. N. (2005). Uncertain science... uncertain world. Cambridge university press.
Ranjbar, M., Miri, S. M., & Effati, S. (2020). Hesitant fuzzy numbers with (α, k)-cuts in compact intervals and applications. Expert systems with applications, 151, 113363. https://doi.org/10.1016/j.eswa.2020.113363
Salicone, S. (2007). Measurement Uncertainty: an approach via the mathematical theory of evidence. Springer science & business media.
Smithson, M. (1988). Ignorance and uncertainty. New York: Springer.
Tong, X., & Yu, L. (2016). MADM based on distance and correlation coefficient measures with decision-maker preferences under a hesitant fuzzy environment. Soft computing, 20(11), 4449-4461. https://doi.org/10.1007/s00500-015-1754-x
Torra, V. (2010). Hesitant fuzzy sets. International journal of intelligent systems, 25(6), 529-539. https://doi.org/10.1002/int.20418
Torra, V., & Narukawa, Y. (2009, August). On hesitant fuzzy sets and decision. 2009 IEEE international conference on fuzzy systems (pp. 1378-1382). IEEE. DOI: 10.1109/FUZZY.2009.5276884
Tzeng, G. H., & Huang, J. J. (2011). Multiple attribute decision making: methods and applications. CRC press.
Xia, M., & Xu, Z. (2011a). Hesitant fuzzy information aggregation in decision making. International journal of approximate reasoning, 52(3), 395-407. https://doi.org/10.1016/j.ijar.2010.09.002
Xia, M., & Xu, Z. (2011b). Methods for fuzzy complementary preference relations based on multiplicative consistency. Computers & industrial engineering, 61(4), 930-935. https://doi.org/10.1016/j.cie.2011.06.005
Xu, Z., & Xia, M. (2011). Distance and similarity measures for hesitant fuzzy sets. Information sciences, 181(11), 2128-2138. https://doi.org/10.1016/j.ins.2011.01.028
Wang, X., & Triantaphyllou, E. (2008). Ranking irregularities when evaluating alternatives by using some ELECTRE methods. Omega, 36(1), 45-63. https://doi.org/10.1016/j.omega.2005.12.003
Weaver, W. (1948). Complexity and science. American scientist, 36, 536-544.
Wei, G. (2012). Hesitant fuzzy prioritized operators and their application to multiple attribute decision making. Knowledge-based systems, 31, 176-182. https://doi.org/10.1016/j.knosys.2012.03.011
Wei, G., Zhao, X., Wang, H., & Lin, R. (2012). Hesitant fuzzy choquet integral aggregation operators and their applications to multiple attribute decision making. International information institute (Tokyo). Information, 15(2), 441-448.
Yu, D., Wu, Y., & Zhou, W. (2011). Multi-criteria decision making based on Choquet integral under hesitant fuzzy environment. Journal of computational information systems, 7(12), 4506-4513.
Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353.
Zadeh, L. A. (1975). The concept of a linear variable and its application to approximate reasoning-1. Information science, 8(3), 199-249.