نوع مقاله : مقاله پژوهشی

نویسندگان

گروه آمار، دانشکده علوم ریاضی، دانشگاه مازندران، بابلسر، ایران.

10.22105/dmor.2021.265211.1292

چکیده

هدف: تصمیم‌گیری در مورد وجود ویژگی بازگشت به میانگین در داده‌های مالی توجه بسیاری از محققان را به خود جلب کرده و آزمون‌های متفاوتی برای بررسی وجود این ویژگی در داده‌ها مطرح شده‌اند، اما باتوجه به ماهیت بسیار متغیر بازارهای مالی در دوره‌های زمانی مختلف، هریک از این آزمون‌ها عموماً نتایج متفاوتی را ارائه می‌دهند و از طرفی، تحلیل‌های نظری دقیقی در راستای چگونگی تشخیص نقاط بازگشت به میانگین در هر لحظه از فرایند نیز انجام نشده است. در این تحقیق به ارائه روشی برای تشخیص نقاط بازگشت به میانگین در داده‌های مالی پرداخته شد. این روش می‌تواند به عنوان یک معیار تصمیم‌گیری برای ورود به بازار و یا خروج از آن در استراتژی‌های معاملاتی مبتنی بر نوسانات باشد.
روش: داده‌های تاریخی قیمت جهانی طلا، بیت کوین، نسبت یورو به دلار، شاخص بورس تهران، نرخ ارز (دلار) و قیمت سکه طلا طی دوره 2013-2020 و اتریوم طی دوره 2016-2020 جمع آوری و مورد تجزیه و تحلیل قرار گرفت. ابتدا فرضیه وجود ویژگی بازگشت به میانگین از طریق دو آزمون دیکی فولر افزوده و توان هرست مورد آزمون قرار گرفته و  به منظور تشخیص نقاط بازگشت به میانگین در هر لحظه از مسیر فرایند، ماکسیمم فاصله داده‌ها با مقدار میانگین-متحرک آن در هر لحظه از طریق توزیع گامبل مدل‌سازی شد.
یافته‌ها: نتایج نشان داد که آزمون‌های  دیکی فولر افزوده و توان هرست  نتایج متفاوتی در تشخیص این ویژگی ارائه می‌دهند.  همچنین نتایج از طریق برآورد چندک‌های 95% توزیع نشان داد که تشخیص این نقاط با استفاده از چندک توزیع مقادیر غایی (گامبل) حداقل در 78/47 درصد (5/57 درصد بدون درنظر گرفتن بیت کوین) و حداکثر در 85/92 درصد مشاهدات، صحیح بوده است.  نتایج آزمون نسبت برای ارزیابی میزان صحت نقاط شناسایی شده نشان داد که تشخیص این نقاط در فرایند، تصادفی نبوده و تئوری مطرح شده در خصوص شناسایی این نقاط به طور مطلوبی عمل می‌کند. بهینه سازی نتایج بر پایه تحلیل‌های بیشتر نیز مورد انتظار است.




نتیجه‌گیری:  تشخیص نقاط متوالی بازگشت به میانگین را می‌توان نشانه‌ای از تشکیل حباب قیمت در بازارهای سرمایه دانست. از این رو توزیع مقادیر غایی در ماکسیمم‌های متوالی اختلاف قیمت از روند همچنین می‌تواند یک توزیع مناسب برای تشخیص تشکیل حباب باشد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Detection of mean reversion point based on quantiles of extreme value distribution: evidences from Iran and international markets

نویسندگان [English]

  • Hossein Mohajer
  • Afshin Fayyaz Movaghar

Department of Statistics, Faculty of Mathematical Sciences, University of Mazandaran, Bablsar, Iran.

چکیده [English]

Purpose: Deciding on the existence of the mean reversion property in financial data has attracted the attention of many researchers, and different tests have been proposed to evaluate the presence of this feature in the data. However, due to the highly variable nature of financial markets in different time periods, each of these tests generally presents different results and on the other hand, detailed theoretical analyzes have not been performed on how to identify the points of mean reversion at each moment of the process. In this study, a method was proposed to identify the mean reversion points in financial data. This method can be used as a decision criterion for entering or leaving the market in swing trading strategies.
Mthod: The historical data on the price of gold (Oz), Bitcoin, EURUSD ratio, Tehran Stock Exchange index, exchange rate (Dollar) and the price of gold coins during the period 2013-2020 and Ethereum during 2016-2020 were collected and analyzed. First, the hypothesis of mean reversion was tested through augmented Dickey-Fuller and Hurst exponent tests and in order to identify the points of mean reversion at each moment of the process path, the maximum values of the difference of data with its moving average value were modeled through the Gumbel distribution.
Findings: The results showed that Dickey Fuller and Hurst exponent tests provide different results in detecting this feature. Also, the results by estimating 95% quantile of the distribution showed that detection of these points using the quantile of the extreme value distribution (Gumbel) ​​was correct in at least 47.78% (57.5% excluding Bitcoin) and at most 92.85% of the detected points. The results of the prop test for evaluating the accuracy of detected points showed that the detection of these points in the process is not random and the proposed theory for the identification of these points works well. Optimization of results based on further analysis is also expected.
Conclusion:  Recognition of successive mean reversion points can be considered a sign of the formation of price bubbles in capital markets. Therefore, the extreme values distribution ​​in consecutive maximums of the price difference from the trend can also be a suitable distribution to detect bubble formation.

کلیدواژه‌ها [English]

  • Extreme values
  • Gumbel distribution
  • Quantile
  • Mean reversion
Ahmed, R. R., Vveinhardt, J., Streimikiene, D., & Channar, Z. A. (2018). Mean reversion in international markets: evidence from GARCH and half-life volatility models. Economic research-Ekonomska istraživanja, 31(1), 1198-1217.
Chan, E. (2013). Algorithmic trading: winning strategies and their rationale (Vol. 625). John Wiley & Sons.
Coles, S. (2003). An introduction to statistical modeling of extreme values. Springer, New York
Corbet, S., & Katsiampa, P. (2020). Asymmetric mean reversion of Bitcoin price returns. International review of financial analysis, 71, 101267. https://doi.org/10.1016/j.irfa.2018.10.004
Diebolt, J., Guillou, A., Naveau, P., & Ribereau, P. (2008). Improving probability-weighted moment methods for the generalized extreme value distribution. REVSTAT-statistical journal, 6(1), 33-50.
Fama, E. F. (1965). The behavior of stock-market prices. The journal of business, 38(1), 34-105. https://www.jstor.org/stable/2350752
Fayyaz Movaghar, A., Launay, G., Schbath, S., Gibrat, J. & Rodolph, O. (2012). Statistical Significance of Threading Scores, Journal of computational biology, 19 (1), 13-29. https://doi.org/10.1089/cmb.2011.0236
 
Fisher, R. A., & Tippett, L. H. C. (1928, April). Limiting forms of the frequency distribution of the largest or smallest member of a sample. Mathematical proceedings of the cambridge philosophical society (Vol. 24, No. 2, pp. 180-190). Cambridge University Press. https://doi.org/10.1017/S0305004100015681
Fréchet, M. (1927). Sur la loi de probabilité de l'écart maximum. Ann. Soc. Math. Polon., 6, 93-116. (in Japanese). https://ci.nii.ac.jp/naid/10006416704/
Marín Sánchez, F. H., & Palacio, J. S. (2013). Gaussian estimation of one-factor mean reversion processes. Journal of probability and statistics. https://doi.org/10.1155/2013/239384
Fuller, W. A. (1976). Introduction to statistical time series. New York: John Wiley and Sons.
Gbenro, N., & Moussa, R. K. (2019). Asymmetric mean reversion in low liquid markets: Evidence from BRVM. Journal of risk and financial management, 12(1), 38. https://doi.org/10.3390/jrfm12010038
Gnedenko, B. (1943). Sur la distribution limite du terme maximum d'une serie aleatoire. Annals of mathematics, 44(3), 423-453. https://doi.org/10.2307/1968974
Gumbel, E. J. (1958). Statistics of extremes. . New York: Columbia university press
Karbasi, Y. H., Noorifard, Y., & Chenari, B. H. (2013). The study of mean reversion in Tehran stock exchange with unit root test. Investment knowledge, 1(4), 87-103. (In Persian). https://jik.srbiau.ac.ir/article_7416.html?lang=fa
Kaviani, M., & Fakhrehosseini, S. F. (2018). Application of operations research techniques in financial research. Decisions and operations research, 3(2), 164-177. (In Persian) DOI: 10.22105/dmor.2018.67216
Kuhe, D. A., & Audu, S. D. (2016). Modelling volatility mean reversion in stock market prices: Implications for long-term investment. Nigerian journal of scientific research, 15(1), 131-139.
Kuttu, S. (2018). Asymmetric mean reversion and volatility in African real exchange rates. Journal of economics and finance, 42(3), 575-590. https://doi.org/10.1007/s12197-017-9412-z
Narayan, P. K., & Narayan, S. (2007). Mean reversion in stock prices: new evidence from panel unit root tests. Studies in economics and finance, 24(3), 233-244. https://doi.org/10.1108/10867370710817419
Oikarinen, E., & Schindler, F. (2015). Momentum and mean reversion in regional housing markets: evidence from variance ratio tests. International journal of strategic property management, 19(3), 220-234. https://doi.org/10.3846/1648715X.2015.1031854
Palwasha, R. I., Ahmad, N., Ahmed, R. R., Vveinhardt, J., & Štreimikienė, D. (2018). Speed of mean reversion: An empirical analysis of KSE, LSE and ISE indices. Technological and economic development of economy, 24(4), 1435-1452. DOI: https://doi.org/10.3846/20294913.2017.1342286
Ranjbar Shamsi, N. (2014). Analysis of mean reversion feature in stock price and return (Master thesis, Islamic Azad University of Central Tehran Branch. (In Persian). Available at https://ganj.irandoc.ac.ir/#/articles/a03d8406908f738d71d157e4ae19bdc8
ROOZEGAR, R., Soufi, B., & Taherizadeh, H. R. (2018). Calacualting value at risk and expected shortfall of some statistical distributions. Journal of decisions and operations research, 3(1), 72-81. (In Persian)  DOI: 10.22105/dmor.2018.64783
Shaik, M., & Maheswaran, S. (2018). Expected lifetime range ratio to find mean reversion: Evidence from Indian stock market. Cogent economics & finance, 6(1), 1475926. https://doi.org/10.1080/23322039.2018.1475926
Shirkond, S., Mohammadi, S., & Dolati, N. An investigation on the presence of mean reversion in stock prices in tehran stock exchange. Financial research journal, 10(25), 41-56. (In Persian). https://jfr.ut.ac.ir/article_27744.html
Soleymanpour Bakefayat, A. (2018). Solving nonlinear optimization via Nelder-Mead optimization method. Journal of decisions and operations research, 3(1), 1-10. (In Persian) DOI: 10.22105/DMOR.2018.63496
Spierdijk, L., Bikker, J. A., & van den Hoek, P. (2010). Mean reversion in international stock markets: an empirical analysis of the 20th century. Journal of international money and finance, 31(2), 228-249. https://doi.org/10.1016/j.jimonfin.2011.11.008
Tang, C. Y., & Chen, S. X. (2009). Parameter estimation and bias correction for diffusion processes. Journal of econometrics, 149(1), 65-81. https://doi.org/10.1016/j.jeconom.2008.11.001
Tehrani, R., Allah Ansari, H., & Saranj, A. (2009). The Study of mean reversion in Tehran security exchange using variance ratio test. Accounting and auditing review, 16(1), 17-32. (In Persian). https://acctgrev.ut.ac.ir/article_19958_1979.html?lang=fa
Tie, J., & Zhang, Q. (2016). An optimal mean-reversion trading rule under a Markov chain model. Mathematical control & related fields, 6(3), 467-488. DOI: 10.3934/mcrf.2016012
Torki, P. (2018). Representing the trading algorithm in future market of gold coin based on the feature of mean reversion (Master thesis, University of Isfahan). (In Persian). Retrieved from http://www.iranlibs.ir/inventory/34/2311.htm
Wilmott, P. (Ed.). (2005). The best of Wilmott 1: Incorporating the quantitative finance review. John Wiley & Sons.
Wu, Y., & Lux, N. (2018). UK house prices: bubbles or market efficiency? Evidence from regional analysis. Journal of risk and financial management, 11(3), 54. https://doi.org/10.3390/jrfm11030054