نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مدیریت بازرگانی، دانشگاه یزد، یزد، ایران.

2 دانشیار گروه مدیریت صنعتی، دانشکده اقتصاد و مدیریت، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران.

چکیده

افزایش رقابت در صنعت بیمه، اکثر مدیران این صنعت را به فکر چاره‌اندیشی برای حضور ماندگار در عرصه کسب‌وکار انداخته‌است، بنابراین آن‌ها ناگزیرند، به دنبال راهکارهایی ‌باشند که در کنار افزایش فروش بیمه‌نامه‌ها به هدف‌های دیگری نیز دست‌یابند ازجمله فاکتورهای جذب مشتری نظیر کاهش هزینه‌ها، کیفیت خدمات، رفتار مناسب کارکنان، کاهش بوروکراسی اداری، کاهش زمان انجام کار مشتری حین ورود به شرکت، کاهش زمان پرداخت خسارت به مشتری و نوآوری برای به‌دست آوردن مزیت رقابتی و غیره. لذا هدف این پژوهش پیش‌بینی و رتبه‌بندی فاکتورهای جذب مشتری در شرکت بیمه ملت شیراز طی سه سال 1398 تا 1400 می‌باشد. برای این منظور از ابزار پویایی‌شناسی و تحلیل ‌پوششی‌ داده‌های ‌شبکه‌ای استفاده شده است. به‌منظور تدوین فاکتورهای جذب مشتری ابتدا نمودار علی-حلقوی و سپس نمودار جریان-حالت، شبیه‌سازی شد. سپس این عملیات برای سناریوهای مختلف اجرا گردید و نتایج شبیه‌سازی شده به‌عنوان ورودی مدل تحلیل‌ پوششی ‌داده‌های شبکه‌ای قرار گرفته شد و بر اساس نتیجه به‌دست‌آمده، بهترین و کاراترین فاکتورهای جذب مشتری انتخاب شد و به بررسی تعامل این برگ خریدها و میزان تأثیر آن‌ها بر موفقیت مشتری مداری پرداخته شد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Predicting and benchmarking the factors of customer attraction in insurance companies by the model of network data envelopment analysis and the theory of dynamics of bass publishing

نویسندگان [English]

  • Mojtaba Kaveh 1
  • Saeid Saeida Ardakani 1
  • Morteza Shafiee 2
  • Seyed Mohammad Tabataba’i Nasab 1

1 Department of Business Administration, Yazd University, Yazd, Iran.

2 Associate Professor of Department of Industrial Management, Economic and Management Faculty, Shiraz Branch, Islamic Aazd University, Shiraz, Iran.

چکیده [English]

Increasing competition in the insurance industry has made most industry executives think of ways to stay in business, so they have to look for ways to increase their sales and other goals, including attracting customers. Such as; reducing costs, quality of service, proper behavior of employees, reducing administrative bureaucracy, reducing the time to do customer work when entering the company, reducing the time to pay compensation to the customer and innovation to gain competitive advantage and so on. Therefore, the purpose of this study is to predict and rank the factors of customer attraction in Mellat Insurance Company of Shiraz during the three years 2019 to 2021. For this purpose, the system dynamics model and network data envelopment analysis have been used. In order to formulate the factors of customer attraction, first the causal-loop diagram and then the stock-flow diagram were simulated. Then, this operation was performed for different scenarios and the simulated results were entered as the input of the network data envelopment analysis model. Based on the obtained result, the best and most efficient factors of customer attraction were selected and the interaction of these factors and their impact and the success of customer orientation was addressed.

کلیدواژه‌ها [English]

  • Benchmarking
  • Bass Publishing Theory
  • Systems Dynamics Model
  • Network Data Envelopment Analysis Model
Amin, F. (2012). Designing a model for aligning human resource management measures and business strategy with the blue ocean approach in Iranian commercial Banks (PhD Thesis, University of Tehran). (In Persian). https://thesis2.ut.ac.ir/thesis/UTCatalog/UTThesis/Forms/ThesisBrief.aspx?thesisID=0810a480-f665-4273-afb4-430e242e42e8
Banker, R.D., Charnes, A., Cooper W.W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management science, 30(9), 1078-1092.
Bass, F. M. (1979). A new product growth for model customer durablesm. Management science, 15(5), 215-227.
Bertotti, M. L., Brunner, J., & Modanese, G. (2016). The Bass diffusion model on networks with correlations and inhomogeneous advertising. Chaos, solitons & fractals, 90, 55-63.
Charnes, A., Cooper, W. W., Golany, B., Seiford, L., & Stutz, J. (1985). Foundations of data envelopment analysis for pareto-koopmans efficient empirical productions functions (No. CCS-504). Texas Univ at Austin Center for Cybernetic Studies.
Coyle, G. (1998). The practice of system dynamics: milestones, lessons and ideas from 30 years experience. System dynamics review: the journal of the system dynamics society14(4), 343-365.
Cummins, J. D., & Nini, G. P. (2002). Optimal capital utilization by financial firms: Evidence from the property-liability insurance industry. Journal of financial services research21(1-2), 15-53.
Elahi, M. (2011). The impact of individual, organizational and technological factors on knowledge sharing and innovation ability in private insurance companies (M.Sc. Thesis, University of Tehran). (In Persian). Retrieved from https://ut.ac.ir/fa/thesis/10949
Elsawah, S., Pierce, S. A., Hamilton, S. H., Van Delden, H., Haase, D., Elmahdi, A., & Jakeman, A. J. (2017). An overview of the system dynamics process for integrated modelling of socio-ecological systems: Lessons on good modelling practice from five case studies. Environmental modelling & software, 93, 127-145.
Emrouznejad, A., Parker, B. R., & Tavares, G. (2008). Evaluation of research in efficiency and productivity: A survey and analysis of the first 30 years of scholarly literature in DEA. Socio-economic planning sciences42(3), 151-157.
Fallah Jelodar, M. (2016). Evaluating the efficiency of Iranian power distribution companies using a combined model of neural networks and data envelopment analysis. Journal of operational research and its applications, 4(51), 67-83. (In Persian). http://jamlu.liau.ac.ir/article-1-1411-fa.html
Fare, R. (1991). Measuring Farrell efficiency for a firm with intermediate inputs. Academia economic papers, 19(12), 329–340.
Färe, R., Grosskopf, S. (2000). Network, DEA. Socio-Econ. Plan. Sci, 34(1), 35-49.
Farrell, M. J. (1957). The measurement of productive efficiency. Journal of the royal statistical society: series A (General)120(3), 253-281.
Forrester, J. W. (1997). Industrial dynamics. Journal of the operational research society48(10), 1037-1041.
Franco, D. (2005, July). Insurance dynamics: managing information flows. Proceedings of 23rd international conference of the system dynamics society. Boston USA. Retrieved from https://proceedings.systemdynamics.org/2005/proceed/papers/FRANC285.pdf
Ghalayini, A. M., Noble, J. S., & Crowe, T. J. (1997). An integrated dynamic performance measurement system for improving manufacturing competitiveness. International journal of production economics48(3), 207-225.
Grösser, S., & Techn, D. (2005). Modeling the health insurance system of Germany: a system dynamics approach. Proceedings of the 23rd international conference of the systems dynamics society (pp. 1-30). Retrieved from https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.525.5012&rep=rep1&type=pdf
Hidayatnoa, A., Putrib, D. N., & Rahmanc, I. (2013). Understanding the dynamics of 6P branding strategy with brand equity for a mature customer-goods brand using a system dynamics model. Proceeding of the 13th international conference on QIR (Quality in Research). Yogyakarta, Indonesia.
Holod, D., & Lewis, H. F. (2011). Resolving the deposit dilemma: A new DEA bank efficiency model. Journal of banking & finance35(11), 2801-2810.
Hsieh, L. F., & Lin, L. H. (2010). A performance evaluation model for international tourist hotels in Taiwan—An application of the relational network DEA. International journal of hospitality management29(1), 14-24.
Jahangiri, R. (2010). A study of how to implement the blue ocean strategy: a case study of Moghaddam garment manufacturing company (Master Thesis, Payame Noor University). (In Persian). Retrieved from https://elmnet.ir/article/10527437-66148
Jahanshahloo, Gh., Hosseinzadeh Lotfi, F., & Nikomram, H. (2016). Data envelopement analysis and its applications, Second Edition. Tehran: Islamic Azad University, Science and Research Branch Publications. (In Persian). Retrieved from http://srbiau.ac.ir/Files/books-pic/tahlil%20posheshi%20dade%20ha.pdf
Jalali Naeini, S. G., Mahdavi Mazdeh, M., & Noor Alizadeh, H., (2013). Analysis of the effect of cancellation of monopoly on the efficiency of Iranian insurance companies. Insurance research, 28(2). (In Persian). Retrieved from http://ensani.ir/fa/article/322972/
Kopainsky, B. (2005). A system dynamics analysis of socio-economic developmenet in lagging Swiss regions. ETH Zurich.
Laniak, G. F., Olchin, G., Goodall, J., Voinov, A., Hill, M., Glynn, P., ... & Peckham, S. (2013). Integrated environmental modeling: a vision and roadmap for the future. Environmental modelling & software39, 3-23.
Liu, J. S., Lu, L. Y., Lu, W. M., & Lin, B. J. (2013). Data envelopment analysis 1978–2010: A citation-based literature survey. Omega41(1), 3-15.
Mahlberg, B., & Url, T. (2003). Effects of the single market on the Austrian insurance industry. Empirical economics28(4), 813-838.
Mashayekhi, A., Azar, A., & Zangouinejad, A. (2014). A dynamic modelling for decreasing loss time average in insurance companies. Iranian journal of trade studies, 18(71), 95-118. (In Persian). http://pajooheshnameh.itsr.ir/article_8657.html?lang=en
Massiani, J., & Gohs, A. (2015). The choice of Bass model coefficients to forecast diffusion for innovative products: An empirical investigation for new automotive technologies. Research in transportation economics50, 17-28.
Mohammadi-Sultanabadi, D. (2011). The need to use customer relationship and its impact on the development of life insurance markets from the perspective of experts and personal insurance experts in the country's insurance companies (Master Thesis, University of Tehran). (In Persian). Retrieved from https://ut.ac.ir/fa/thesis/10654
Momeni, M., Safari, H., Rostami, M., Mostafaei, A., & Soleimani Damaneh, R. (2017). Designing a non-oriented NDEA for performance evaluation. Management studies in development and evolution, 26(86), 1-23. 10.22054/JMSD.2017.8441
Najafi, S. E., Haji Molana, S. M., & Balavand, S. M. (2015). Using simulation and data envelopment analysis to identify the most efficient scenario in a multi-level inventory control system. International conference on new research in industrial management and engineering. Tehran, Idea Managers Co. Processors of the capital of Elijah. (In Persian). https://www.sid.ir/fa/seminar/ViewPaper.aspx?id=71171
Nilchi, M., Fadaei Nejad, M. E., & Razavi-Hajiagha, S. H., & Badri, A. (2017). Providing new multi-component data envelopment analysis to evaluate efficiency of bank branches. Industrial management studies, 15(46), 73-96. (In Persian). 10.22054/JIMS.2017.7989
Otto, P. (2008). A system dynamics model as a decision aid in evaluating and communicating complex market entry strategies. Journal of business research, 61(11), 1173-1181.
Park, S. J., & Choi, S. (2016). Valuation of adopters based on the Bass model for a new product. Technological forecasting and social change108, 63-69.
Pishbahar, I., Ferdowsi, R., Hayati, B. (2017). Development and prioritization of dairy products marketing strategies of Pegah Company of east Azerbaijan: application of hierarchical analysis approach. Agricultural economics, 11(4), 1-19. (In Persian). https://www.sid.ir/fa/journal/ViewPaper.aspx?id=350697
Rashnavadi, Y., Abtahi, S. A. &, Sarami Foroushani, A. (2017). Dynamic modeling of life insurance situation in Iran with systems dynamics approach. Insurance research, 32(4), 64-43. (In Persian). 10.22056/JIR.2017.81552.2049
Rodriguez-Ulloa, R., & Paucar-Caceres, A. (2005). Soft system dynamics methodology (SSDM): combining soft systems methodology (SSM) and system dynamics (SD). Systemic practice and action research18(3), 303-334.
Shafeiha, S., Ardestani, S. A., Afshar Kazemi, M. A., & Mirabi, V. (2017). Designing the brand equity model and forecasting the future process in alborz insurance company with using a system dynamics approach. Journal of future studied management, 28(2), 75-89. (In Persian). http://jmfr.srbiau.ac.ir/article_10993.html
Shirai, M. (2017). Effects of price reframing tactics on consumer perceptions. Journal of retailing and consumer services34, 82-87.
Smith, P. C. & Ackere, A. V. (2002). A note on the integration of system dynamics and economic models. Journal of economic dynamics & control, 26(1), 1-10.
Sterman, J. D. (2018).Business dynamics (Vol .1): systems thinking and modeling for a complex world (K. Bararpour, B. Behzad, L. Rezaii Adl, M. Emami, P. Mousavi Ahrangani, H. Faghani, Trans.). Organization for the Study and Compilation of University Humanities Books (Position). (In Persian). http://samt.ac.ir/fa/book
Tone, K., & Sahoo, B. K. (2005). Evaluating cost efficiency and returns to scale in the life insurance corporation of India using data envelopment analysis. Socio-economic planning sciences39(4), 261-285.
Yu, M. M. (2008). Assessing the technical efficiency, service effectiveness, and technical effectiveness of the world’s railways through NDEA analysis. Transportation research Part A: policy and practice42(10), 1283-1294.