مدلسازی پویا جهت ارزیابی کارائی در شبکه تامین چند سطحی متوالی

نوع مقاله : مقاله پژوهشی - کاربردی

نویسندگان

1 گروه مدیریت صنعتی، واحد تهران غرب، دانشگاه آزاد اسلامی، تهران، ایران.

2 گروه مدیریت صنعتی، واحد نوشهر، دانشگاه آزاد اسلامی، نوشهر، ایران.

10.22105/dmor.2020.242474.1196

چکیده

تحلیل پوششی داده‌ها یکی از روش­های پرکاربرد در زمینه ارزیابی و محک‌زنی کارایی نسبی مجموعه­ای از واحدهای تصمیم‌گیری همگن با ورودی­ها و خروجی­های مشابه می‌باشد. با این حال، مدل‌های کلاسیک و شبکه­ای ساده در تحلیل پوششی داده‌ها قادر به محاسبه کارایی شبکه­های تأمین چندمرحله‌ای و متوالی نیستند. این نوع از شبکه­ها علاوه بر ساختار متوالی، دارای مؤلفه‌های اختصاصی و مشترک بوده که در طی دوره زمانی عملکرد سیستم را تحت‌الشعاع قرار می­دهند. هدف این مقاله مدل‌سازی در قالب توسعه مدل غیر شعاعی SBM و ارائه مدل تحلیل پوششی داده‌ها‌ی پویا جهت ارزیابی عملکرد شبکه تأمین پایدار میباشد. این مدل به‌عنوان یک شبکه گسترده و چند سطحی در صنعت سیمان اعتبار سنجی شده است و امکان محاسبه کارایی در سطوح پنج‌گانه شبکه تأمین را در دوره‌های متوالی فراهم می‌آورد. نتایج نشان داد مدل جدید در مقایسه با مدل‌های کلاسیک و شبکه­ای ایستا، ارزیابی منطقی و نزدیک به واقعیت را انجام می­دهد و مشکلات مدل‌های شبکه ساده نیز، برطرف شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Dynamic modeling to evaluate the efficiency of a sequential multilevel supply network

نویسندگان [English]

  • Mohammad Hossein Darvish Motevali 1
  • Majid Motamedi 2
1 Department of Industrial Management, West Tehran Branch, Islamic Azad University, Tehran, Iran.
2 Department of Industrial Management, Nowshahr Branch, Islamic Azad University, Nowshahr, Iran.
چکیده [English]

Data envelopment analysis is the most widely used mathematical model to evaluate the efficiency of decision units. Classical and simple network models in data envelopment analysis are not able to calculate the efficiency of multi-stage and sequential supply networks. These types of networks include several successive structures and components, such as the 5-level supply network, which are used in many strategic industries. The distinction between this structure and the sequence of supply networks with several components over time as well as the relationship between the efficiency of a time period and the total efficiency during a time period is examined. The purpose of this paper is modeling in the form of developing a non-radial SBM model and presenting a dynamic data envelopment analysis model to evaluate the performance of a sustainable supply network as a wide and multi-level network so that efficiency can be calculated at five levels of supply network as well as periods. Provide consecutive. The model presented in the 5-level supply network in the cement industry has been validated. The results showed that the new model performs a logical and close to reality evaluation compared to the classic and static network models.

کلیدواژه‌ها [English]

  • Multilevel Supply Network
  • Sequential Network
  • Dynamic Data Envelopment Analysis
Amirteimoori, A. (2006). Data envelopment analysis in dynamic framework. Applied mathematics and computation, 181, 21-28. https://doi.org/10.1016/j.amc.2006.01.003
Avkiran, N. K., & McCrystal, A. (2014). Dynamic network range-adjusted measure vs. dynamic network slacks-based measure. Journal of the operations research society of japan, 57(1), 1-14.https://doi.org/10.15807/jorsj.57.1
Azadi, M. & Jafarian, M. (2015). A new fuzzy DEA model for evaluation of efficiency and effectiveness of suppliers in sustainable supply chain management context. Computers & operations research, 54, 274 -285. https://doi.org/10.1016/j.cor.2014.03.002
Babazadeh, R., Razmi, J., & Rabbani, M. (2017). An integrated data envelopment analysisemathematical programming approach to strategic biodiesel supply chain network design problem. Journal of cleaner production, 147, 694-707. https://doi.org/10.1016/j.jclepro.2015.09.038
Badiezadeh, T., & Farzipoor Saen, R., & Samavati, T. (2018). Assessing sustainability of supply chains by double frontier network DEA: a big data approach. Computers & operations research, 98, 284-290. https://doi.org/10.1016/j.cor.2017.06.003
Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management science, 30, 1078-1092. https://doi.org/10.1287/mnsc.30.9.1078
Boudaghi, E., Farzipoor Saen, R. (2018). Developing a novel model of data envelopment analysis–discriminant analysis for predicting group membership of suppliers in sustainable supply chain. Computers and operations research, 89, 348–359. https://doi.org/10.1016/j.cor.2017.01.006
Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European journal of operational research, 2, 429–444. https://doi.org/10.1016/0377-2217(78)90138-8
Chen, CH. M. (2009). A network-DEA model with new efficiency measures to incorporate the dynamic effect in production networks. European journal of operational research, 194(3), 687-699. https://doi.org/10.1016/j.ejor.2007.12.025
Chen, C. M., & Van Dalen, J. (2010). Measuring dynamic efficiency: Theories and an integrated methodology. European journal of operational research, 203(3), 749-760. https://doi.org/10.1016/j.ejor.2009.09.001
Cook, W. D., Zhu, J., Gongbing, B., & Yang, F. (2010). Network DEA: Additive efficiency decomposition. European journal of operational research, 207(2), 1122-1129. https://doi.org/10.1016/j.ejor.2010.05.006
De Camargo Fiorini, P., & Charbel José, j. (2017). Information systems and sustainable supply chain management towards a more sustainable society. International journal of information management, 37(4), 241-249. https://doi.org/10.1016/j.ijinfomgt.2016.12.004
Emrouznejad, A., & Thanassoulis, E. (2005). A mathematical model for dynamic efficiency using data envelopment analysis. Journal of applied mathematics and computation, 160, 363-378.https://doi.org/10.1016/j.amc.2003.09.026
Mariz, F. B., Almeida, M. R., & Aloise, D. (2018). A review of dynamic data envelopment analysis: state of the art and applications. International transactions in operational research, 25(2), 469-505. https://doi.org/10.1111/itor.12468
Fukuyama, H., & Weber, W. L. (2015). Measuring Japanese bank performance: A dynamic network DEA approach. Journal of productivity analysis, 44(3), 249-264. https://doi.org/10.1007/s11123-014-0403-1
Goleij, M. J. (2017). New model of two-stage fuzzy data envelopment analysis with variable scale returns. Decision making and operations research, 2(2), 130-146. (In Persion). https://doi.org/10.22105/DMOR.2018.54145
Genovese, A., Acquaye, A. A., Figueroa, A., & Koh, S. L. (2017). Sustainable supply chain management and the transition towards a circular economy: evidence and some applications. Omega, 66, 344-357. https://doi.org/10.1016/j.omega.2015.05.015
Hatami-Marbini, A., Ebrahimnejad, A., & Lozano, S. (2017). Fuzzy efficiency measures in data envelopment analysis using lexicographic multiobjective approach. Journal of computers & industrial engineering, 105, 362–376. https://doi.org/10.1016/j.cie.2017.01.009
Hosseinzadeh-Lotfi, F., Jahanshahloo, G. R., & Mohammadpour, M. (2013). An extension of cross redundancy of interval scale outputs and inputs in DEA. Hindawi publishing corporation journal of applied mathematics, 7, 635-658. https://doi.org/10.1155/2013/658635
Hosseinzadeh-Lotfi, F., Taeb, Z., & Abbasbandy, S. (2017). Determine the efficiency of time depended units by using data envelopment analysis. International journal of research in industrial engineering, 6(3), 193–201. https://doi.org/10.22105/RIEJ.2017.49156
Hsu, SH., & Kuo, T. (2013). Using DEMATEL to develop a carbon management model of supplier selection in green supply chain management. Journal of cleaner production. 56, 164-172. https://doi.org/10.1016/j.jclepro.2011.09.012
Kao, CH. (2013). Dynamic data envelopment analysis: A relational analysis. European journal of operational research, 227, 325–330. https://doi.org/10.1016/j.ejor.2012.12.012
Khalili-Damghani, K., & Ghasemi, P. (2016). Uncertain centralized/decentralized production-distribution planning problem in multi-product supply chains: fuzzy mathematical optimization approaches. Industrial engineering and management systems,15(2), 156-172. https://doi.org/10.7232/iems.2016.15.2.156
Madahi, R., & Yazdani, H. (2020). Ranking of decision-making units using data envelopment analysis considering multiple time periods. Decision making and operations research, 5‌(1), 72-82. (In Persion). https://doi.org/10.22105/DMOR.2020.226087.1143
Moreno, P. & Lozano, S. (2016). Super SBI dynamic network DEA approach to measuring efficiency in the provision of public services. International transactions in operational research, 25(2), 715-735. https://doi.org/10.1111/itor.12257
Nemoto, J., & Goto, M. (1999). Dynamic data envelopment analysis: modeling intertemporal behavior of a firm in the presence of productive inefficiencies. Journal of economics letters, 64,51-56. https://doi.org/10.1016/S0165-1765(99)00070-1
Olfat, L., Amiri, M., Bamdad Soufi, J., & Pishdar, M. (2016). A dynamic network efficiency measurement of airports performance considering sustainable development concept: a fuzzy dynamic network-DEA approach. Journal of air transport management, 57, 272-290. https://doi.org/10.1016/j.jairtraman.2016.08.007
Shabanpour, H., Yousefi, S., & Farzipoor Saen, R. (2017). Forecasting efficiency of green suppliers by dynamic data envelopment analysis and artificial neural networks. Journal of cleaner production, 142, 1098-1107. https://doi.org/10.1016/j.jclepro.2016.08.147
Soleymani Damaneh, R. (2019). Evaluation of continuous two-stage structures: a new multi-objective network data envelopment analysis (MO-NDEA) approach. Industrial management journal, 11(3), 487-516. (In Persion). https://doi.org/10.22059/IMJ.2019.280013.1007585
Tavana, M., Shabanpour, H., Yousefi, S., & Saen, R. F. (2017). A hybrid goal programming and dynamic data envelopment analysis framework for sustainable supplier evaluation. Neural computing and applications, 28(12), 3683-3696. 10.1007/s00521-016-2274-z
Tavassoli, M., Farzipoor Saen, R., & Faramarzi, G. R. (2015). Developing network data envelopment analysis model for supply chain performance measurement in the presence of zero data. Journal of expert systems 32(3),381-391. https://doi.org/10.1111/exsy.12097
Tone, K. (2001). A slacks-based measure of efficiency in data envelopment analysis. European journal of operational research, 130, 498–509. https://doi.org/10.1016/S0377-2217(99)00407-5
Tone, k., & Tsutsui, M. (2010). Dynamic DEA: a slacks-based measure approach. Journal of omega, 38, 3-4. https://doi.org/10.1016/j.omega.2009.07.003
Tone, T., & Tsutsui, M. (2014). Dynamic DEA with network structure: A slacks-based measure approach. Journal of omega, 42, 124-131. https://doi.org/10.1016/j.omega.2013.04.002
Zha, Y., Liang, N., Wu, M., & Bian, Y. (2016). Efficiency evaluation of banks in China: a dynamic two-stage slacks-based measure approach. Omega, 60, 60-72. https://doi.org/10.1016/j.omega.2014.12.008