نوع مقاله : مقاله پژوهشی

نویسنده

دانشکده علوم ریاضی، دانشگاه مازندران، بابلسر، ایران

چکیده

دردر این مقاله، یک روش ناحیه اعتماد جدید برای حداقل‌سازی تابع پیوسته لیپ‌شیتز موضعی نامحدب ارایه می‌گردد. در این روش،‌ در تست نسبت حداکثر برخی مقدارهای تابع هدف در تکرارهای قبلی جایگزین مقدار تابع هدف فعلی می‌شود. این روشدارای خاصیت غیریکنواختی بوده که از افتادن الگوریتم در دره‌های باریک جلوگیری می‌کند. اثبات همگرایی سراسری این روش، تنها نیازمند شرط وجود کاهش کافی در مدل تقریبی تابع هدف توسط جواب زیرمساله ناحیه اعتماد و کرانداری ماتریس تقریب هسی است. در انتها همگرایی سراسری روش پیشنهادی اثبات می‌شود. روش پیشنهادی در محیط MATLABروی برخی مسایل بهینه‌سازی نامحدب پیاده‌سازی شده و نتایجعددی با روش ناحیه اعتماد ناهموار مقایسه می‌شود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

A new trust region method for minimizing locally lipschitz functions

نویسنده [English]

  • Zohreh Akbari

Department of Mathematical Sciences, University of Mazandaran, Babolsar, Iran.

چکیده [English]

In this paper, we present a new trust region method for unconstrained optimization problems with locally Lipschitz continuous, nonconvex functions. In this method, in the ratio test, the current objective function value is replaced with maximum of some objective function values in the previous iterations. The new method nonmonotone properties and prevents falling into narrow valleys. Proving global convergence requires only two conditions: 1- there should be is a sufficient reduction for the approximate model in the solution of trust region subproblem, 2- the approximation Hessian matrix be bounded. Then, the convergence property of this method is investigated. Finally, the presented method is implemented on some nonconvex problems in MATLAB environment and numerical results are compared with the nonsmooth trust region method.

کلیدواژه‌ها [English]

  • Nonsmooth nonmonotone trust region method
  • locally Lipschitz continuous function
  • nonconvex optimization
  • global convergence
Akbari, Z., Yousefpour, R., & Peyghami, M. R. (2015). A new nonsmooth trust region algorithm for locally Lipschitz unconstrained optimization problems. Journal of optimization theory and applications, 164, 733-754.
Akbari, Z., Yousefpour, R., & Peyghami, M. R. (2019). A new nonsmooth trust-region method equipped with a line search for minimizing locally Lipschitz functions. Pacific journal of optimization, 14 (4), 551-565.
Ataee Tarzanagh, D., Peyghami, M. R., & Mesgarani, H. (2014). A new nonmonotone trust region method for unconstrained optimization equipped by an efficient adaptive radius. Optimization methods and software, 29(4), 819-836.
Bagirov, A., Jin, L., & Karmitsa, N. (2013). Subgradientmethod for nonconvex nonsmooth optimization. Journal of optimization theory and applications, 157, 416–435.
Bagirov‎, A., Karmitsa, N., & M kel , M. M. (2014). Introduction to nonsmooth optimization: theory, practice and software.  Berlin, Springer.
Conn‎, ‎A.R‎., Gould‎, ‎N.I.M‎., & Toint‎, ‎P.L. (2000). Trust region methods. ‎Philadelphia, SIAM.
 
Davidon, W.C. (1980). Conic approximation and collinear scaling for optimizers. SIAM journal on numerical analysis, 17, 281-268.
Di, S., & Sun, W. (1996). Trust region method for conic model to solve unconstrained optimization problems. Optimization methods and software, 6, 237-263.
Fletcher, R., Leyffer, S., & Toint, P. L. (2006). A brief history of filter methods. Preprint ANL/MCS-P1372-0906, argonne national laboratory, mathematics and computer science division, 36.
Grippo, L., Lampariello, F., & Lucidi, S. (1986). A nonmonotone line search technique for newton's method. SIAM journal on numerical analysis, 23(4), 707-716.
Haarala, N., Miettinen, K., & M kel , M. M. (2007). Globally convergent limited memory bundle method for large-scale nonsmooth optimization. Mathematical programming, 109, 181–205.
Hei, L. (2003). A self-adaptive trust region algorithm. Journal of computational mathematics, 21(2), 229-236.  
Hoseini, N‎., ‎& Nobakhtian, S, (2018). A new trust region method for nonsmooth nonconvex optimization. Optimization, 67(8), 1265-1286.
Lukšan, L., Tuma, M., Matonoha, C., Vlcek, J., Ramešová, N., Šiška, M., & Hartman, J. (2010). UFO 2014: interactive system for universal functional optimization (Vol. 1252). Technical report.
Mahdavi-Amiri, N., & Yousefpour, R. (2012). An effective nonsmooth optimization algorithm for locally Lipschitz functions. Journal of optimization theory and applications, 155, 180-195.
Nocedal, J., & Wright, S.J. (1999). Numerical optimization. Berlin, Springer.
Sun., W. (2004). Nonmonotone trust region method for solving optimization problems. Appl. Math. Comput., 156(1), 159-174.
Qi, L., & Sun, J. (1994). A trust region algorithm for minimization of locally Lipschitzian functions. Mathematical programming, 66, 25-43.
Sun, W., & Yuan, Y.X. (2006). Optimization theory and methods: nonlinear programming. Springer, New York.
Zhang, ju, & Zhang, X-Sun. (2003). A nonmonotone adaptive trust region method and its convergence. Computers & mathematics with applications. 45, 1469-1477.