سنجش کارایی موسسات حسابرسی با استفاده از تحلیل پوششی داده ها

نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه حسابداری، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی ، تهران ، ایران.

2 گروه حسابداری، واحد کرج، دانشگاه آزاد اسلامی، کرج، ایران.

3 گروه ریاضی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.

4 گروه حسابداری، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران ، ایران.

چکیده

امروزه تحلیل پوششی داده‌ها تکنیکی مناسب و سودمند برای سنجش و ارزیابی کارایی واحدهای تصمیم‌گیرنده می‌باشد. این تکنیک در ارزیابی کارایی واحدها در حسابرسی نیز ابزاری کارامد محسوب می‌شود. از این‌رو، هدف این مقاله آن است تا با به‌کارگیری تحلیل پوششی داده‌ها، کارایی موسسات حسابرسی را از نظر کیفیت حسابرسی مورد بررسی قرار دهد. مبانی نظری و داده‌های پژوهش حاضر بر اساس مطالعات کتابخانه‌ای از صنعت داروسازی شرکت‌های فعال در بورس اوراق بهادار تهران جمع‌آوری شده است. در این پژوهش، متغیر خروجی کیفیت حسابرسی و متغیرهای ورودی شامل تعداد شرکای موسسات حسابرسی، حق‌الزحمه حسابرسی و نفر ساعات کار حسابرسی در هر شرکت می‌باشد. نتایج با استفاده از روش کارایی متقاطع تحلیل پوششی داده‌ها، نشان می‌دهد موسسات حسابرسی بهمند، آزموده کاران و آروین ارقام پارس رتبه‌های اول تا سوم را از لحاظ کارایی برخوردار هستند. شواهد این پژوهش تایید می‌نمایند که تحلیل پوششی داده‌ها می‌تواند به‌عنوان روشی مناسب برای تجزیه‌و‌تحلیل کارایی موسسات حسابرسی در سیاست‌گذاری‌های بازار سرمایه به‌منظور ارزیابی کیفیت کار حسابرسان در راستای حمایت از سرمایه‌گذاران توسط تحلیل‌گران مالی و سیاست‌گذاران بازار سرمایه قرار گیرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluate the efficiency of audit firms using data envelopment analysis

نویسندگان [English]

  • Rezvan Shaban 1
  • Bahman Banimahd 2
  • Farhad Hosseinzadeh Lotfi 3
  • Hashem Nikoumaram 4
1 Department of Accounting, Science and Research Branch, Islamic Azad University, Tehran, Iran.
2 Department of Accounting, Karaj Branch, Islamic Azad University, Karaj, Iran.
3 Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran.
4 Department of Accounting, Science and Research Branch, Islamic Azad University, Tehran, Iran.
چکیده [English]

Data envelopment analysis is a suitable and useful technique for measuring and evaluating the efficiency of decision-making units. This technique is also an effective tool in evaluating the efficiency of units in auditing. Therefore, the purpose of this paper is to evaluate the efficiency of audit firms in terms of audit quality by using data envelopment analysis. Theoretical foundations and data of the this study are based on library studies of the pharmaceutical industry of companies listed in the Tehran Stock Exchange. In this study, the output variable is audit quality and input variables include the number of partners of auditing firms, audit fees and auditing hours. The results, using the cross-functional method of data envelopment analysis, show that Behmand ,Azmoodeh Karan and Arvin Argham Pars have the first to third ranks in terms of efficiency. Evidence from this study confirms that data envelopment analysis can be used as an appropriate method for analyzing the efficiency of audit firms in in order to assess the quality of auditors' work to support investors by financial analysts and capital market policymakers.

کلیدواژه‌ها [English]

  • Audit Firms
  • Data Envelopment Analysis
  • Audit Quality and Efficiency
Kaviani, M., & Fakhr Hosseini, S. F. (2018). Application of operations research techniques in financial research [کاربرد تکنیک‌های تحقیق در عملیات در تحقیقات مالی]. Journal of decision making and operations research, ‌4 (1), 164-177.
Rahnamay Roodposhti, F., Safety, M., & Sayadmanesh, Sh. (2019). Application of BSC and innovative methods developed in management accounting and strategic performance measurement decisions [کاربستBSCو روشهای نوآورانه توسعه یافته در حسابداری مدیریت و تصمیمهای استراتژیک سنجش عملکرد]. Journal of decision making and operations research, 4 (3), 246-261.
Agyeman, A. S., Gyimah, A. G., & Adu-Asare, S. (2020). Assessing the impact of operational flaws on the performance of microfinance institutions in Ghana: a case study of selected microfinance institutions. Journal of applied research on industrial engineering, 7(1), 92-108.
Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management science30(9), 1078-1092.
Banker, R. D., Chang, H., & Natarajan, R. (2005). Productivity change, technical progress, and relative efficiency change in the public accounting industry. Management science, 51(2), 291-304.
Barros, C. P., Couto, E., & Samagaio, A. (2014). Productivity analysis of UK auditing firms. Australian accounting review, 24(4), 381-393.
Chang, H., Choy, H. L., Cooper, W. W., Parker, B. R., & Ruefli, T. W. (2009a). Measuring productivity growth, technical progress, and efficiency changes of CPA firms prior to, and following the Sarbanes–Oxley Act. Socio-economic planning sciences, 43(4), 221-228.
Chang, H., Choy, H. L., Cooper, W. W., & Ruefli, T. W. (2009b). Using Malmquist Indexes to measure changes in the productivity and efficiency of US accounting firms before and after the Sarbanes–Oxley Act. Omega, 37(5), 951-960.
Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European journal of operational research, 2(6), 429-444.
Cheng, T. W., Wang, K. L., & Weng, C. C. (2000). A study of technical efficiencies of CPA firms in Taiwan. Review of pacific basin financial markets and policies, 3(01), 27-44.
Cook, W. D., & Seiford, L. M. (2009). Data envelopment analysis (DEA)–Thirty years on. European journal of operational research, 192(1), 1-17.
De Martinis, M., & Houghton, K. (2019). The business risk audit approach and audit production efficiency. Abacus, 55(4), 734-782.
Doyle, J., & Green, R. (1994). Efficiency and cross-efficiency in DEA: derivations, meanings and uses. Journal of the operational research society, 45(5), 567-578.
Edalatpanah, S. A. (2020). Data envelopment analysis based on triangular neutrosophic numbers. CAAI transactions on intelligence technology, 5(2), 94-98.
Ehrgott, M. (2005). Multicriteria optimization (Vol. 491). Springer Science & Business Media.
Ghaziyani, K., Ejlaly, B., & Bagheri, S. F. (2019). Evaluation of the efficiency by DEA a case study of hospital. International journal of research in industrial engineering8(3), 283-293.
Gong, Y., Zhu, J., Chen, Y., & Cook, W. D. (2018). DEA as a tool for auditing: application to Chinese manufacturing industry with parallel network structures. Annals of operations research263(1-2), 247-269.
Jerris, S. I., & Pearson, T. A. (1997). Benchmarking CPA firms for productivity and efficiency: an update. The CPA journal67(3), 58.
Kaffash, S., Azizi, R., Huang, Y., & Zhu, J. (2020). A survey of data envelopment analysis applications in the insurance industry 1993–2018. European journal of operational research284(3), 801-813.
Kothari, S. P., Leone, A. J., & Wasley, C. E. (2005). Performance matched discretionary accrual measures. Journal of accounting and economics39(1), 163-197.
Kuo, K. C., Lu, W. M., & Dinh, T. N. (2020). Firm performance and ownership structure: dynamic network data envelopment analysis approach. Managerial and decision economics41(4), 608-623.
Lee, C. C. (2009). Analysis of overall technical efficiency, pure technical efficiency and scale efficiency in the medium-sized audit firms. Expert systems with applications36(8), 11156-11171.
Lee, S. Y. (2015). The impact of non-audit services on accounting firm productivity. International journal of u-and e-service, science and technology8(10), 41-52.
Lee, C. C. (2018). Efficiency evaluation of accounting firm partnerships from the perspective of operating difficulties, strategies, and practices in Mainland China. Benchmarking: an international journal, 25(8), 2968-2996.
Liang, L., Wu, J., Cook, W. D., & Zhu, J. (2008). Alternative secondary goals in DEA cross-efficiency evaluation. International journal of production economics113(2), 1025-1030.
Mao, X., Guoxi, Z., Fallah, M., & Edalatpanah, S. A. (2020). A neutrosophic-based Approach in data envelopment analysis with undesirable outputs. Mathematical problems in engineering1(1), 1-8.
Matsumoto, K. I., Makridou, G., & Doumpos, M. (2020). Evaluating environmental performance using data envelopment analysis: The case of European countries. Journal of cleaner production272, 1-44.
Moeini, M., Karimi, B., & Khorram, E. (2015). A cross-efficiency approach for evaluating decision making units in presence of undesirable outputs. In Modelling, computation and optimization in information systems and management sciences (pp. 487-498).
Refahi Bakhsh, S., Banimahd, B., Kheradyar, S., & Ooshaksaraei, M. (2020). The ranking of fraudulent financial reporting by using data envelopment analysis: case of pharmaceutical listed companies.Advances in mathematical finance & applications, 5(1), 69-80.
Sexton, T. R., Silkman, R. H., & Hogan, A. J. (1986). Data envelopment analysis: Critique and extensions. In Silkman, R. H. (Ed.), Measuring efficiency: an assessment of data envelopmentanalysis (pp. 73-105). Jossey-Bass, San Francisco.
Tavakoli, M. M., Molavi, B., & Shirouyehzad, H. (2017). Organizational performance evaluation considering human capital management approach by fuzzy-dea: a case study. International journal of research in industrial engineering6(1), 1-16.
Wang, W., Lu, W., Kweh, Q.L., Cheng, I.T., (2014) Does intellectual capital matter? assessing the performance of CPA firms based on additive efficiency decomposition DEA. Knowledge-based systems, 65 (3), 38–49
Wanke, P., Barros, C., & Azad, M. A. K. (2017). Measuring efficiency drivers and productive slacks in UK auditing firms. Benchmarking: an international journal, 24 (3), 806-823.

مقالات آماده انتشار، اصلاح شده برای چاپ
انتشار آنلاین از تاریخ 01 شهریور 1399
  • تاریخ دریافت: 03 بهمن 1398
  • تاریخ بازنگری: 11 اسفند 1398
  • تاریخ پذیرش: 10 اردیبهشت 1399